Chinese Journal of Tropical Crops ›› 2022, Vol. 43 ›› Issue (12): 2554-2563.DOI: 10.3969/j.issn.1000-2561.2022.12.018
• Post-harvest Treatment & Quality Safety • Previous Articles Next Articles
Received:
2022-03-09
Revised:
2022-04-07
Online:
2022-12-25
Published:
2023-01-12
Contact:
LIN Yingzhi
CLC Number:
LIU Xian, LIN Yingzhi. Comparative Study of Multiple Image Edge Detection Operators Applied to Size Measurement of Passiflora edulia Sims[J]. Chinese Journal of Tropical Crops, 2022, 43(12): 2554-2563.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2022.12.018
算子 Operator | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
Sobel | 对噪声具有平滑抑制的作用[ | 得到的边缘较粗且可能出现伪边缘[ |
Prewitt | 受噪声影响较小,适用于灰度渐变和低噪声图像[ | 定位精度低[ |
Roberts | 比较适用于应用在水平和垂直边缘的检测,在对水平和垂直边缘定位时能够较准确地定位出位置[ | 抗噪音能力弱,对噪音较敏感 [ |
Canny | 抗干扰性强,计算复杂度低[ | 人为设置高低阈值导致算法的适应性低,图像边缘信息丢失,产生伪边缘[ |
Scharr | 突变有较强的响应,速度快[ | 阈值无法很好地分离边缘候选点中边缘点与非边缘点[ |
Laplacian | 定位精度高[ | 不具有sobel和prewitt等边缘检测算子的图像平滑功能,对噪声的响应敏感,会误将噪声作为边缘[ |
Log | 边界定位精度高,抗干扰能力强,连续性好[ | 对噪声敏感[ |
Tab. 1 Comparison of edge detection operators
算子 Operator | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
Sobel | 对噪声具有平滑抑制的作用[ | 得到的边缘较粗且可能出现伪边缘[ |
Prewitt | 受噪声影响较小,适用于灰度渐变和低噪声图像[ | 定位精度低[ |
Roberts | 比较适用于应用在水平和垂直边缘的检测,在对水平和垂直边缘定位时能够较准确地定位出位置[ | 抗噪音能力弱,对噪音较敏感 [ |
Canny | 抗干扰性强,计算复杂度低[ | 人为设置高低阈值导致算法的适应性低,图像边缘信息丢失,产生伪边缘[ |
Scharr | 突变有较强的响应,速度快[ | 阈值无法很好地分离边缘候选点中边缘点与非边缘点[ |
Laplacian | 定位精度高[ | 不具有sobel和prewitt等边缘检测算子的图像平滑功能,对噪声的响应敏感,会误将噪声作为边缘[ |
Log | 边界定位精度高,抗干扰能力强,连续性好[ | 对噪声敏感[ |
算子 Operator | 调优参数 Tuning parameters | 步长 Step | 范围 Range |
---|---|---|---|
Canny | Threshold1 | 5 | 5~100 |
Threshold2 | 0.5 *threshold1 | 1.0 * threshold1- 5.0 * threshold1 | |
ApertureSize | 2 | 3~7 | |
Sobel | ksize | 2 | 1~7 |
delta | 1 | 0~10 | |
Laplacian | ksize | 2 | 1~7 |
delta | 1 | 0~10 | |
Scharr | delta | 1 | 0~10 |
Tab. 2 Algorithm parameter tuning
算子 Operator | 调优参数 Tuning parameters | 步长 Step | 范围 Range |
---|---|---|---|
Canny | Threshold1 | 5 | 5~100 |
Threshold2 | 0.5 *threshold1 | 1.0 * threshold1- 5.0 * threshold1 | |
ApertureSize | 2 | 3~7 | |
Sobel | ksize | 2 | 1~7 |
delta | 1 | 0~10 | |
Laplacian | ksize | 2 | 1~7 |
delta | 1 | 0~10 | |
Scharr | delta | 1 | 0~10 |
算子 Operator | 百香果图 The original image of Passiflora edulia Sims | 灰度图像 Grayscale image | 二值图像 Binary image | 边缘检测结果图 Edge detection results |
---|---|---|---|---|
Canny | ![]() | NULL | NULL | ![]() |
Sobel | ![]() | ![]() | ![]() | ![]() |
Laplacian | ![]() | ![]() | ![]() | ![]() |
Scharr | ![]() | ![]() | ![]() | ![]() |
Tab. 3 Result of edge detection experiment of No. 1 passion fruit
算子 Operator | 百香果图 The original image of Passiflora edulia Sims | 灰度图像 Grayscale image | 二值图像 Binary image | 边缘检测结果图 Edge detection results |
---|---|---|---|---|
Canny | ![]() | NULL | NULL | ![]() |
Sobel | ![]() | ![]() | ![]() | ![]() |
Laplacian | ![]() | ![]() | ![]() | ![]() |
Scharr | ![]() | ![]() | ![]() | ![]() |
算子 Operator | 百香果图 The original image of Passiflora edulia Sims | 灰度图像 Grayscale image | 二值图像 Binary image | 边缘检测结果图 Edge detection results |
---|---|---|---|---|
Canny | ![]() | NULL | NULL | ![]() |
Sobel | ![]() | ![]() | ![]() | ![]() |
Laplacian | ![]() | ![]() | ![]() | ![]() |
Scharr | ![]() | ![]() | ![]() | ![]() |
Tab. 4 Result of edge detection experiment of No. 14 passion fruit
算子 Operator | 百香果图 The original image of Passiflora edulia Sims | 灰度图像 Grayscale image | 二值图像 Binary image | 边缘检测结果图 Edge detection results |
---|---|---|---|---|
Canny | ![]() | NULL | NULL | ![]() |
Sobel | ![]() | ![]() | ![]() | ![]() |
Laplacian | ![]() | ![]() | ![]() | ![]() |
Scharr | ![]() | ![]() | ![]() | ![]() |
算子 Operator | 百香果图 The original image of Passiflora edulia Sims | 灰度图像 Grayscale image | 二值图像 Binary image | 边缘检测结果图 Edge detection results |
---|---|---|---|---|
Canny | ![]() | NULL | NULL | ![]() |
Sobel | ![]() | ![]() | ![]() | ![]() |
Laplacian | ![]() | ![]() | ![]() | ![]() |
Scharr | ![]() | ![]() | ![]() | ![]() |
Tab. 5 Result of the edge detection experiment of No. 35 passion fruit
算子 Operator | 百香果图 The original image of Passiflora edulia Sims | 灰度图像 Grayscale image | 二值图像 Binary image | 边缘检测结果图 Edge detection results |
---|---|---|---|---|
Canny | ![]() | NULL | NULL | ![]() |
Sobel | ![]() | ![]() | ![]() | ![]() |
Laplacian | ![]() | ![]() | ![]() | ![]() |
Scharr | ![]() | ![]() | ![]() | ![]() |
算子 Operator | 方差齐性检验 Homogeneity test of variance | 单因素方差分析 Single factor analysis of variance |
---|---|---|
Canny | ![]() | |
Sobel | ![]() | ![]() |
Laplacian | ![]() | ![]() |
Scharr | ![]() | ![]() |
Tab. 6 Analysis of variance of optimization results of four operator parameters
算子 Operator | 方差齐性检验 Homogeneity test of variance | 单因素方差分析 Single factor analysis of variance |
---|---|---|
Canny | ![]() | |
Sobel | ![]() | ![]() |
Laplacian | ![]() | ![]() |
Scharr | ![]() | ![]() |
算子 Operator | 最小检测误差值 Minimum detection error value | 最大检测误差值 Maximum detection error value | 平均检测误差值 Average detection error value |
---|---|---|---|
Canny | 0.0012 | 0.0448 | 0.0160 |
Sobel | 0.0066 | 0.1662 | 0.0537 |
Laplacian | 0.0008 | 0.0980 | 0.0329 |
Scharr | 0.0002 | 0.1467 | 0.0398 |
Tab. 7 Comparison of four operators detection accuracy
算子 Operator | 最小检测误差值 Minimum detection error value | 最大检测误差值 Maximum detection error value | 平均检测误差值 Average detection error value |
---|---|---|---|
Canny | 0.0012 | 0.0448 | 0.0160 |
Sobel | 0.0066 | 0.1662 | 0.0537 |
Laplacian | 0.0008 | 0.0980 | 0.0329 |
Scharr | 0.0002 | 0.1467 | 0.0398 |
算子 Operator | 最小运行时间 Minimum running time | 最大运行时间 Maximum running time | 平均运行时间 Average running time |
---|---|---|---|
Canny | 1.20 | 4.60 | 1.98 |
Sobel | 2.12 | 5.17 | 3.01 |
Laplacian | 2.59 | 6.73 | 3.57 |
Scharr | 2.16 | 9.37 | 3.87 |
Tab. 8 Comparison of single fruit detection time by four operator ms
算子 Operator | 最小运行时间 Minimum running time | 最大运行时间 Maximum running time | 平均运行时间 Average running time |
---|---|---|---|
Canny | 1.20 | 4.60 | 1.98 |
Sobel | 2.12 | 5.17 | 3.01 |
Laplacian | 2.59 | 6.73 | 3.57 |
Scharr | 2.16 | 9.37 | 3.87 |
[1] | 杨锋, 黄永春, 何仁, 任仙娥, 陈锦姬. 百香果加工适性的测定及提高其出汁率的研究[J]. 食品研究与开发, 2008, 29(5): 82-86. |
YANG F, HUANG Y C, HE R, REN X E, CHEN J J. Determination of processing suitability of passion fruit and study on improving its juice yield[J]. Food Research and Development, 2008, 29(5): 82-86. (in Chinese) | |
[2] | BARBOSA P R, VALVASSORI S S, BORDIGNON C L, KAPPEL V D, MARTINS M R, GAVIOLI E C, QUEVEDO J, REGINATTO F H. The aqueous extracts of Passiflora alata and Passiflora edulis reduce anxiety-related behaviors without affecting memory process in rats[J]. Journal of Medicinal Food, 2008, 2(11): 282-288. |
[3] | COLETA M, BATISTA M T, CAMPOS M G, CARVALHO R, COTRIM M D, DE LIMA T C M, DA CUNHA A P. Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents[J]. Phytotherapy Research, 2006, 12(20): 1067-1073. |
[4] | SENA L M, ZUCOLOTTO S M, REGINATTO F H, SCHENKEL E P, DE LIMA T C M. Neuropharmacological activity of the pericarp of Passiflora edulis flavicarpa degener: putative involvement of c-glycosylflavonoids[J]. Experimental Biology & Medicine, 2009, 234(8): 967-975. |
[5] | 林开颜, 吴军辉. 基于计算机视觉的水果分级技术研究进展[J]. 信息化纵横, 2009(10): 1-4. |
LIN K Y, WU J H. Research progress of fruit grading technology based on computer vision[J]. Informatization Freely, 2009(10): 1-4. (in Chinese) | |
[6] | 任永新, 单忠德, 张静, 战丽. 计算机视觉技术在水果品质检测中的研究进展[J]. 中国农业科技导报, 2012, 14(1): 98-103. |
REN Y X, SHAN Z D, ZHANG J, ZHAN L. Research progress of computer vision technology in fruit quality detection[J]. China Agricultural Science and Technology Guide, 2012, 14(1): 98-103. (in Chinese) | |
[7] | 张书彦, 张文毅, 余山山, 付宇超. 图像处理技术在信息农业中的应用现状及发展趋势[J]. 江苏农业科学, 2017, 45(22): 9-13. |
ZHANG S Y, ZHANG W Y, YU S S, FU Y C. Application status and development trend of image processing technology in information agriculture[J]. Jiangsu Agricultural Sciences, 2017, 45(22): 9-13. (in Chinese) | |
[8] | 邓泓, 杨滢婷, 刘志超, 彭莹琼. 基于实时数据的智能农业图像处理系统的实现[J]. 数字技术与应用, 2019, 37(11): 160-161. |
DENG H, YANG Y T, LIU Z C, PENG Y Q. Implementation of intelligent agricultural image processing system based on real-time data[J]. Digital Technology and Application, 2019, 37(11): 160-161. (in Chinese) | |
[9] | 姚立健, 边起, 雷良育, 赵大旭. 基于BP神经网络的水果分级研究[J]. 浙江农业学报, 2012, 24(5): 926-930. |
YAO L J, BIAN Q, LEI L Y, ZHAO D Q. Research on fruit grading based on BP neural network[J]. Acta Agriculturae Zhejiangensis, 2012, 24(5): 926-930. (in Chinese) | |
[10] | 周林妹. 数字图像边缘检测算法及其在农产品加工中的应用[J]. 食品与机械, 2009, 25(3): 139-153. |
ZHOU L M. Digital image edge detection algorithm and its application in agricultural product processing[J]. Food and Machinery, 2009, 25(3): 139-153. (in Chinese) | |
[11] | 黄凤. 边缘检测算子在武夷岩茶图像处理中的比较[J]. 廊坊师范学院学报(自然科学版), 2013, 13(4): 34-37. |
HUANG F. Comparison of edge detection operators in Wuyi Rock Tea image processing[J]. Journal of Langfang Normal University (Natural Science Edition), 2013, 13(4): 34-37. (in Chinese) | |
[12] | 刘现, 蔡淑芳, 黄语燕. 基于Canny算子的福橘图像边缘检测研究[J]. 东南园艺, 2018(6): 19-22. |
LIU X, CAI S F, HUANG Y Y. Research on edge detection of Kumquat image based on Canny operator[J]. Southeast Horticulture, 2018(6): 19-22. (in Chinese) | |
[13] | 朱培逸, 刘红晴. 基于数学形态学图像分割算法在水果分级中的应用[J]. 科学技术与工程, 2013, 13(34): 10375-10380. |
ZHU P Y, LIU H Q. Application of image segmentation algorithm based on mathematical morphology in fruit grading[J]. Science Technology and Engineering, 2013, 13(34): 10375-10380. (in Chinese) | |
[14] | 刘新庭, 匡迎春, 陈熵, 欧明文, 曾文辉. 基于最小外接圆直径的苹果分级研究[J]. 中国农学通报, 2015, 31(20): 239-243. |
LIU X T, KUANG Y C, CHEN S, OU M W, ZENG W H. Study on apple grading based on minimum circumscribed circle diameter[J]. Bulletin of Chinese Agronomy, 2015, 31(20): 239-243. (in Chinese) | |
[15] | 崔巍, 高珏, 朱培逸, 徐金星, 邓婉. 基于机器视觉的金桔大小分级研究[J]. 常熟理工学院学报(自然科学), 2012, 26(4): 87-90. |
CUI W, GAO J, ZHU P Y, XU J X, DENG W. Research on size classification of Kumquat based on machine vision[J]. Journal of Changshu Institute of Technology (Natural Science), 2012, 26(4): 87-90. (in Chinese) | |
[16] | 黄辰, 费继友. 基于图像特征融合的苹果在线分级方法[J]. 农业工程学报, 2017, 33(1):285-291. |
HUANG C, FEI J Y. Apple online grading method based on image feature fusion[J]. Journal of Agricultural Engineering, 2017, 33(1): 285-291. (in Chinese) | |
[17] | SNEHA A, SANYAM A. A new approach for image steganography using edge detection method[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013, 1(3): 626-629. |
[18] | RASHMI, MUKESH K, ROHINI S. Algorithm and technique on various edge detection: a survey[J]. Signal & Image Processing, 2013, 4(3): 65-75. |
[19] | JAMAL R. A novel automatic object detection in images[J]. Current Research in Computer Science, 2013, 1(1): 1-4. |
[20] | LEEMANS V, DESTAIN M F. A real-time grading method of apples based on features extracted from defects[J]. Journal of Food Engineering, 2004(61): 83-89. |
[21] | DEVRIM U, BERNARD G, OLIVIER K, VINCENT L, MARIE-FRANCE D, OLIVIER D. Automatic grading of bicolored apples by multispectral machine vision[J]. Computer and Electronics in Agriculture, 2011(75): 204-212. |
[22] | HASSANKHANI R, NAVID H. Potato sorting based on size and color in machine vision system[J]. Journal of Agricultural Science, 2012, 4(5): 235-244. |
[23] | ABDOLLAH G, FARID B, HOSSEIN B. Design, development and evaluation of an online potato sorting system using machine vision[J]. International Journal of Agriculture and Crop Science, 2013, 6(7): 396-402. |
[24] | CANNY J. A computational approach to edge detection[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1986(12): 679-697. |
[25] | 林雯. 边缘检测算子分析与比较[J]. 湖南工业职业技术学院学报, 2012, 12(5): 6-25. |
LIN W. Analysis and comparison of edge detection operators[J]. Journal of Hunan Polytechnic College, 2012, 12(5): 6-25. (in Chinese) | |
[26] | 周逢道, 马晨, 潘自超. 一种基于Sobel算子的星敏感器星图预处理方法[J]. 导航定位与授时, 2021, 8(4): 98-106. |
ZHOU F D, MA C, PAN Z C. A star map preprocessing method of star sensor based on Sobel operator[J]. Navigation, Positioning and Timing, 2021, 8(4): 98-106. (in Chinese) | |
[27] | 冯伍, 张俊兰, 苗秋瑾. 几种典型边缘检测算子的评估[J]. 电子设计工程, 2011, 19(4): 131-133. |
FENG W, ZHANG J L, MIAO Q J. Evaluation of several typical edge detection operators[J]. Electronic Design Engineering, 2011, 19(4): 131-133. (in Chinese) | |
[28] | 王文豪, 姜明新, 赵文东. 基于Canny算子改进的边缘检测算法[J]. 中国科技论文, 2017, 12(8): 910-915. |
WANG W H, JIANG M X, ZHAO W D. Improved edge detection algorithm based on Canny operator[J]. Chinese Scientific Papers, 2017, 12(8): 910-915. (in Chinese) | |
[29] | 李静, 陈桂芬, 丁小奇. 基于改进Canny算法的图像边缘检测方法研究[J]. 计算机仿真, 2021, 38(4): 371-375. |
LI J, CHEN G F, DING X Q. Research on image edge detection method based on improved Canny algorithm[J]. Computer Simulation, 2021, 38(4): 371-375. (in Chinese) | |
[30] | 毛星云, 冷雪飞. OpenCV3编程入门[M]. 北京: 电子工业出版社, 2015. |
MAO X Y, LENG X F. Introduction to OpenCV3 programming[M]. Beijing: Electronic Industry Press, 2015. (in Chinese) | |
[31] | 欧温暖. 几种常见边缘检测算子的分析比较[J]. 现代计算机(专业版), 2010(5): 75-77. |
OU W N. Analysis and comparison of several common edge detection operators[J]. Modern Computer (Professional Edition), 2010(5): 75-77. (in Chinese) | |
[32] | 彭士有, 吴洁, 彭俊. 拉普拉斯边缘检测算法的改进及其在探地雷达中的应用[J]. 现代雷达, 2020, 42(8): 41-45. |
PENG S Y, WU J, PENG J. Improvement of laplacian edge detection algorithm and its application on GPR[J]. Modern radar, 2020, 42(8): 41-45. (in Chinese) | |
[33] | 杜伟, 何毅斌, 吴林慧, 汪强. 融合改进形态学和LOG算子的齿轮边缘检测[J]. 武汉工程大学学报, 2021, 43(6): 675-680. |
DU W, HE Y B, WU L H, WANG Q. Gear edge detection based on improved morphology and LOG operator[J]. Journal of Wuhan University of Engineering, 2021, 43(6): 675-680. (in Chinese) | |
[34] | 乔闹生, 邹北骥, 邓磊, 曾友兵, 邹剑臣. 一种基于图像融合的含噪图像边缘检测方法[J]. 光电子激光, 2012, 23(11): 2215-2219. |
QIAO N S, ZOU B J, DENG L, ZENG Y B, ZOU J C. An edge detection method of noisy image based on image fusion[J]. Photoelectron Laser, 2012, 23(11): 2215-2219. (in Chinese) | |
[35] | 张泽泓, 杨成忠, 李广亮. 交通标志边缘检测技术研究[J]. 杭州电子科技大学学报, 2014, 34(1): 83-86. |
ZHANG Z H, YANG C Z, LI G L. Research on edge detection technology of traffic signs[J]. Journal of Hangzhou University of Electronic Science and Technology, 2014, 34(1): 83-86. (in Chinese) | |
[36] | BRADSKI G, KAEHLER A. 学习OpenCV[M]. 北京: 清华大学出版社, 2009. |
BRADSKI G, KAEHLER A. Learning OpenCV[M]. Beijing: Tsinghua University Press, 2009. (in Chinese) | |
[37] | 武松, 潘发明. SPSS统计分析大全[M]. 北京: 清华大学出版社, 2014. |
WU S, PAN F M. SPSS statistical analysis[M]. Beijing: Tsinghua University Press, 2014. (in Chinese) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||