[1] |
陈君, 马子龙, 覃伟权, 等. 世界槟榔产业发展概况[J]. 中国热带农业, 2009(6):32-34.
|
[2] |
罗大全. 海南槟榔黄化病研究现状[J]. 世界热带农业信息, 2007(6):24-26.
|
[3] |
邓秀成. 海南省槟榔产业链优化研究[D]. 武汉: 华中农业大学, 2008.
|
[4] |
罗大全. 重视海南槟榔黄化病的发生及防控[J]. 中国热带农业, 2009(3):11-13.
|
[5] |
曹学仁, 车海彦, 罗大全. 槟榔生理性黄化发生原因与防控建议[J]. 中国热带农业, 2016(2):51-52.
|
[6] |
李晓娜, 曾小红, 谢龙莲, 等. 槟榔科学研究近况分析[J]. 热带农业科学, 2017, 37(3):79-82.
|
[7] |
车海彦, 曹学仁, 禤哲, 等. 槟榔黄化病“该防”还是“该治”[J]. 中国热带农业, 2018(5):46-48.
|
[8] |
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(11):57-63.
DOI
URL
|
[9] |
Vaidya K, Ghosh A, Kumar V, et al. De Novo transcriptome sequencing in Trigonella foenumgraecum L. to identify genes involved in the biosynjournal of diosgenin[J]. The Plant Genome, 2013, 6(2):1-11.
|
[10] |
Zhu B Z, Yang Y F, Li R, et al. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening[J]. Journal of Experimental Botany, 2015, 66(15):4483-4495.
DOI
URL
|
[11] |
Novaes E, Drost D R, Farmerie W G, et al. High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome[J]. BMC Genomics, 2008, 9(1):312.
DOI
URL
|
[12] |
Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652.
DOI
PMID
|
[13] |
Simao F A, Waterhouse R M, Ioannidis P, et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs[J]. Bioinformatics, 2015, 31(19):3210-3212.
DOI
URL
|
[14] |
Conesa A, Madrigal P, Tarazona S, et al. A survey of best practices for RNA-seq data analysis[J]. Genome Biology, 2016, 17(1):13.
DOI
URL
|
[15] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
DOI
URL
|
[16] |
Manimekalai R, Nair S, Naganeeswaran A, et al. Transcriptome sequencing and de novo assembly in arecanut, Areca catechu L. elucidates the secondary metabolite pathway genes[J]. Biotechnology Reports, 2018, 17:63-69.
DOI
URL
|
[17] |
押辉远, 陈叶, 张岩松, 等. 槟榔不同发育时期果实转录组特征分析[J]. 热带作物学报, 2020, 41(7):1279-1287.
|
[18] |
Li J, Jia X C, Liu L Y, et al. Comparative biochemical and transcriptome analysis provides insights into the regulatory mechanism of striped leaf albinism in arecanut (Areca catechu L.)[J/OL]. Industrial Crops and Products, 2020, 154. DOI: 10.1016/j.indcrop.2020.112734.
DOI
|
[19] |
Zhang L, Yin X J, Zhang J C, et al. Comprehensive microbiome and metabolome analyses reveal the physiological mechanism of chlorotic Areca leaves[J/OL]. Tree Physiology, 2020, 41(1). DOI: 10.1093/treephys/tpaa112.
DOI
|
[20] |
徐云姬, 黄钻华, 王志琴, 等. 油菜素甾醇类化合物在水稻生长发育及抗逆中的研究进展[J]. 中国农学通报, 2012, 28(9):1-5.
|
[21] |
孙超, 黎家. 油菜素甾醇类激素的生物合成、代谢及信号转导[J]. 植物生理学报, 2017, 53(3):291-307.
|
[22] |
张长青, 王进, 高翔. 拟南芥TCH4基因启动区转录调控元件的计算识别[J]. 遗传, 2008, 30(5):620-626.
|
[23] |
欧阳光察, 薛应龙. 植物苯丙烷类代谢的生理意义及其调控[J]. 植物生理学通讯, 1988(3):9-16.
|
[24] |
Niyogi K K, Bjorkman G O, Grossman A R. The roles of specific xanthophylls in photoprotection[J]. Proceedings of the National Academy of Sciences, 1997, 94(25):14162-14167.
DOI
URL
|
[25] |
Niyogi K K, Bjorkman G O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion[J]. The Plant Cell, 1998, 10(7):1121-1134.
DOI
URL
|
[26] |
Williams R J, Spencer J P E, Rice-Evans C. Flavonoids: antioxidants or signalling molecules?[J]. Free Radical Biology and Medicine, 2004, 36(7):838-849.
PMID
|
[27] |
Tattini M, Galardi C, Pinelli P, et al. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress[J]. New Phytologist, 2004, 163(3):547-561.
DOI
URL
|