Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (6): 1265-1272.DOI: 10.3969/j.issn.1000-2561.2020.06.027
• Ecology • Previous Articles Next Articles
TANG Lu,WANG Sheng,DAN Jianguo()
Received:
2019-02-10
Revised:
2019-10-26
Online:
2020-06-25
Published:
2020-07-30
Contact:
DAN Jianguo
CLC Number:
TANG Lu,WANG Sheng,DAN Jianguo. Iron Plaque Formation on Roots from Different Oryza rufipogon Populations[J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1265-1272.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.06.027
居群名称 Code of populations | 地点 Location | 经纬度 Latitude and longitude | 海拔 Altitude/m | 原生境特征 In situ habitat characteristics |
---|---|---|---|---|
HLY | 文昌市东路镇葫芦洋野生稻保护示范点 | E:110°68° N:19°78° | 25.30 | 生长于洼地、田边水沟渠旁,有水葫芦等杂草伴生。周围种有大面积的富贵竹。 |
HGV | 文昌市东路镇红光村委会 | E:110°70° N:19°73° | 18.70 | 生长于浅水沼泽地,已建立保护区。周围种有木麻黄、重阳木以及一些海南灌木。 |
XLB | 文昌市东路镇下路村 | E:110°68° N:19°76° | 26.90 | 生长于公路边小溪流里。周围种有对叶榕、椰子、菠萝蜜和重阳木等。 |
FLV | 琼海市中原镇凤楼村 | E:110°28° N:19°06° | 12.00 | 生长于池塘和沼泽地,已建立保护区。周围种有杂交水稻。 |
MXV | 万宁市东澳镇明星村 | E:110°24° N:18°44° | 10.00 | 生长于沼泽地和水沟,已建立保护区。周围为荒地或种有旱地作物。 |
HQF | 儋州市和庆镇新征农场和庆分场四队 | E:109°63° N:19°51° | 133.90 | 生长于浅水沼泽地,已建立保护区。周围种有大量橡胶树和香蕉。 |
YYY | 海口市琼山区红旗镇云雁村云雁洋 | E:110°55° N:19°82° | 34.40 | 生长于田边水沟旁,有水葫芦等杂草伴生。周围有芦苇、灌木及旱地作物。 |
MBV | 海口市琼山区旧州镇美帮村 | E:110°42° N:19°81° | 21.50 | 生长于田边水沟旁。周围为荒地或种有旱地作物,如木薯、花生、玉米等。 |
Tab. 1 Basic information of eight populations of O. rufipogon
居群名称 Code of populations | 地点 Location | 经纬度 Latitude and longitude | 海拔 Altitude/m | 原生境特征 In situ habitat characteristics |
---|---|---|---|---|
HLY | 文昌市东路镇葫芦洋野生稻保护示范点 | E:110°68° N:19°78° | 25.30 | 生长于洼地、田边水沟渠旁,有水葫芦等杂草伴生。周围种有大面积的富贵竹。 |
HGV | 文昌市东路镇红光村委会 | E:110°70° N:19°73° | 18.70 | 生长于浅水沼泽地,已建立保护区。周围种有木麻黄、重阳木以及一些海南灌木。 |
XLB | 文昌市东路镇下路村 | E:110°68° N:19°76° | 26.90 | 生长于公路边小溪流里。周围种有对叶榕、椰子、菠萝蜜和重阳木等。 |
FLV | 琼海市中原镇凤楼村 | E:110°28° N:19°06° | 12.00 | 生长于池塘和沼泽地,已建立保护区。周围种有杂交水稻。 |
MXV | 万宁市东澳镇明星村 | E:110°24° N:18°44° | 10.00 | 生长于沼泽地和水沟,已建立保护区。周围为荒地或种有旱地作物。 |
HQF | 儋州市和庆镇新征农场和庆分场四队 | E:109°63° N:19°51° | 133.90 | 生长于浅水沼泽地,已建立保护区。周围种有大量橡胶树和香蕉。 |
YYY | 海口市琼山区红旗镇云雁村云雁洋 | E:110°55° N:19°82° | 34.40 | 生长于田边水沟旁,有水葫芦等杂草伴生。周围有芦苇、灌木及旱地作物。 |
MBV | 海口市琼山区旧州镇美帮村 | E:110°42° N:19°81° | 21.50 | 生长于田边水沟旁。周围为荒地或种有旱地作物,如木薯、花生、玉米等。 |
居群 Populations | 株高 Plant height/cm | 分蘖数 Number of tillers per plant | 生物量 Biomass | 根孔隙度 Root porosity/% | |
---|---|---|---|---|---|
地上部 Aboveground biomass/g | 根系 Root biomass/mg | ||||
HLY | 108.83±2.46bc | 4.67±0.33ab | 2.06±0.42a | 271.67±62.04abc | 39.14±2.43a |
HGV | 117.50±1.04ab | 3.67±0.33ab | 1.27±0.26a | 169.67±32.92bc | 34.18±0.91a |
XLB | 118.50±2.75a | 4.67±1.20ab | 1.94±0.84a | 404.33±163.26ab | 35.51±3.30a |
FLV | 111.00±2.84abc | 5.00±0.00a | 2.45±0.27a | 466.33±64.25a | 38.18±0.45a |
MXV | 115.50±2.75ab | 3.33±0.33ab | 1.97±0.42a | 308.67±71.88abc | 36.46±3.35a |
HQF | 105.50±3.01c | 4.00±0.58ab | 1.62±0.18a | 205.00±35.13bc | 33.28±3.36a |
YYY | 117.67±3.48ab | 3.00±0.00b | 1.41±0.07a | 166.67±10.48bc | 38.40±0.85a |
MBV | 112.67±3.00abc | 3.33±0.33ab | 1.29±0.12a | 121.33±6.23c | 35.35±3.58a |
Tab. 2 Biological characteristics and root porosity of eight populations of O. rufipogon
居群 Populations | 株高 Plant height/cm | 分蘖数 Number of tillers per plant | 生物量 Biomass | 根孔隙度 Root porosity/% | |
---|---|---|---|---|---|
地上部 Aboveground biomass/g | 根系 Root biomass/mg | ||||
HLY | 108.83±2.46bc | 4.67±0.33ab | 2.06±0.42a | 271.67±62.04abc | 39.14±2.43a |
HGV | 117.50±1.04ab | 3.67±0.33ab | 1.27±0.26a | 169.67±32.92bc | 34.18±0.91a |
XLB | 118.50±2.75a | 4.67±1.20ab | 1.94±0.84a | 404.33±163.26ab | 35.51±3.30a |
FLV | 111.00±2.84abc | 5.00±0.00a | 2.45±0.27a | 466.33±64.25a | 38.18±0.45a |
MXV | 115.50±2.75ab | 3.33±0.33ab | 1.97±0.42a | 308.67±71.88abc | 36.46±3.35a |
HQF | 105.50±3.01c | 4.00±0.58ab | 1.62±0.18a | 205.00±35.13bc | 33.28±3.36a |
YYY | 117.67±3.48ab | 3.00±0.00b | 1.41±0.07a | 166.67±10.48bc | 38.40±0.85a |
MBV | 112.67±3.00abc | 3.33±0.33ab | 1.29±0.12a | 121.33±6.23c | 35.35±3.58a |
居群 Populations | 主根表面积 Surface area of adventitious roots per plant/cm2 | 侧根表面积 Surface area of lateral roots per plant/cm2 | 根系表面积 Root system's surface area per plant/cm2 | 侧根表面积所占比率 Percentage of surface area of lateral roots/% | 根系体积 Root system volume per plant/cm3 |
---|---|---|---|---|---|
HLY | 198.70±40.40c | 92.16±22.04a | 290.86±62.04bc | 31.79±1.78a | 6.04±1.36bc |
HGV | 142.53±14.48c | 15.60±8.19b | 158.13±22.66c | 8.89±3.41c | 3.48±0.37c |
XLB | 373.53±120.60ab | 58.43±25.40ab | 431.96±145.61ab | 12.78±1.77bc | 11.99±4.20ab |
FLV | 457.12±67.01a | 80.95±14.30a | 538.07±81.30a | 14.90±0.49bc | 15.11±2.75a |
MXV | 279.41±52.18bc | 59.90±10.56ab | 339.31±62.61abc | 17.71±0.41b | 9.26±1.43abc |
HQF | 153.47±26.57c | 57.61±17.39ab | 211.08±43.96bc | 26.31±2.40a | 3.80±0.70c |
YYY | 126.77±11.60c | 26.53±3.79b | 153.30±14.98c | 17.21±1.15b | 3.38±0.38c |
MBV | 120.99±10.52c | 16.72±2.68b | 137.70±11.05c | 12.20±1.75bc | 3.04±0.38c |
Tab. 3 Surface area and volume of roots of eight populations of O. rufipogon
居群 Populations | 主根表面积 Surface area of adventitious roots per plant/cm2 | 侧根表面积 Surface area of lateral roots per plant/cm2 | 根系表面积 Root system's surface area per plant/cm2 | 侧根表面积所占比率 Percentage of surface area of lateral roots/% | 根系体积 Root system volume per plant/cm3 |
---|---|---|---|---|---|
HLY | 198.70±40.40c | 92.16±22.04a | 290.86±62.04bc | 31.79±1.78a | 6.04±1.36bc |
HGV | 142.53±14.48c | 15.60±8.19b | 158.13±22.66c | 8.89±3.41c | 3.48±0.37c |
XLB | 373.53±120.60ab | 58.43±25.40ab | 431.96±145.61ab | 12.78±1.77bc | 11.99±4.20ab |
FLV | 457.12±67.01a | 80.95±14.30a | 538.07±81.30a | 14.90±0.49bc | 15.11±2.75a |
MXV | 279.41±52.18bc | 59.90±10.56ab | 339.31±62.61abc | 17.71±0.41b | 9.26±1.43abc |
HQF | 153.47±26.57c | 57.61±17.39ab | 211.08±43.96bc | 26.31±2.40a | 3.80±0.70c |
YYY | 126.77±11.60c | 26.53±3.79b | 153.30±14.98c | 17.21±1.15b | 3.38±0.38c |
MBV | 120.99±10.52c | 16.72±2.68b | 137.70±11.05c | 12.20±1.75bc | 3.04±0.38c |
Fig. 2 Content of iron plaque on roots(A), amount of iron plaque per plant(B), amount of iron plaque per root surface area(C), and relative amount of iron plaque (D) for different populations of O. rufipogon Different lowercase letters above the bars mean significant difference among different populations (P<0.05).
根表铁膜 Iron plaque indices | 根孔隙度 Root porosity/% | 根生物量 Root biomass/mg | 主根表面积 surface area of adventitious roots per plant/cm2 | 侧根表面积 surface area of lateral roots per plant/cm2 | 根系表面积 root system’s surface area per plant/cm2 | 侧根表面积 所占比率 percentage of surface area of lateral roots/% | 根系体积 root system volume per plant/cm3 |
---|---|---|---|---|---|---|---|
根表铁膜含量/(mg·g-1) | -0.283 | -0.199 | -0.333 | 0.155 | -0.258 | 0.473* | -0.362 |
根表铁膜数量/(mg·plant-1) | 0.032 | 0.722** | 0.588** | 0.746** | 0.649** | 0.393 | 0.561** |
根表铁膜厚度/(μg·cm-2) | -0.313 | -0.150 | -0.304 | 0.062 | -0.244 | 0.389 | -0.336 |
根表铁膜相对数量/(mg·cm-1·plant -1) | 0.032 | 0.552** | 0.386 | 0.751** | 0.479* | 0.602** | 0.354 |
Tab. 4 Correlation coefficients between iron plaque and parameters of roots of O. rufipogon
根表铁膜 Iron plaque indices | 根孔隙度 Root porosity/% | 根生物量 Root biomass/mg | 主根表面积 surface area of adventitious roots per plant/cm2 | 侧根表面积 surface area of lateral roots per plant/cm2 | 根系表面积 root system’s surface area per plant/cm2 | 侧根表面积 所占比率 percentage of surface area of lateral roots/% | 根系体积 root system volume per plant/cm3 |
---|---|---|---|---|---|---|---|
根表铁膜含量/(mg·g-1) | -0.283 | -0.199 | -0.333 | 0.155 | -0.258 | 0.473* | -0.362 |
根表铁膜数量/(mg·plant-1) | 0.032 | 0.722** | 0.588** | 0.746** | 0.649** | 0.393 | 0.561** |
根表铁膜厚度/(μg·cm-2) | -0.313 | -0.150 | -0.304 | 0.062 | -0.244 | 0.389 | -0.336 |
根表铁膜相对数量/(mg·cm-1·plant -1) | 0.032 | 0.552** | 0.386 | 0.751** | 0.479* | 0.602** | 0.354 |
[1] | 董玉琛. 作物野生种质资源及其利用[C/OL]// 第一届全国野生稻大会, 2003:13-18.[2019-02-10] http://www. wanfangdata.com. cn/details/detail.do?_type=conference&id= 6892958 |
[2] | 庞汉华. 普通野生稻优异种质资源主要特点与利用展望[J]. 种子, 1998(3):31-32. |
[3] | 王效宁, 韩东飞, 云勇, 等. 利用SSR标记分析海南普通野生稻的遗传多样性[J]. 植物遗传资源学报, 2007(2):184-188. |
[4] | 刘迪, 孟卫东. 海南野生稻的遗传多样性及其保护与利用[J]. 杂交水稻, 2010,25(S1):525-527. |
[5] | 黄剑冰, 任杰, 唐璐, 等. 栽培稻和普通野生稻居群根表铁膜形成能力的比较研究[J]. 热带作物学报, 2017,38(3):421-425. |
[6] | 刘侯俊, 张俊伶, 韩晓日, 等. 根表铁膜对元素吸收的效应及其影响因素[J]. 土壤, 2009,41(3):335-343. |
[7] | Jiang F Y, Chen X, Luo A C. Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake[J]. Aquatic Ecology, 2009,43(4):879-890. |
[8] | 杨旭健, 傅友强, 沈宏, 等. 水稻根表铁膜及其形成的形态、生理及分子机理综述术[J]. 生态学杂志, 2014,33(8):2235-2244. |
[9] | 刘依依, 傅志强, 龙文飞, 等. 水稻根系泌氧能力与根系通气组织大小相关性的研究[J]. 农业现代化研究, 2015,36(6):1105-1111. |
[10] | 李奕林. 水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 2012,32(7):2066-2074. |
[11] |
Liu W J, Zhu Y G, Smith F A, et al. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?[J]. New Phytologist, 2004,162(2):481-488.
DOI URL |
[12] |
Zhou X B, Shi W M, Zhang L H. Iron plaque outside roots affects selenite uptake by rice seedlings (Oryza sativa L.) grown in solution culture[J]. Plant and Soil, 2007,290(1/2):17-28.
DOI URL |
[13] |
Chen R F, Shen R F, Gu P, et al. Response of rice (Oryza sativa) with root surface iron plaque under aluminium stress[J]. Annals of Botany, 2006,98(2):389-395.
DOI URL PMID |
[14] |
Mi W J, Cai J B, Tuo Y, et al. Distinguishable root plaque on root surface of Potamogeton crispus grown in two sediments with different nutrient status[J]. Limnology, 2013,14(1):1-11.
DOI URL |
[15] | Liang Y, Zhu Y G, Xia Y, et al. Iron plaque enhances phosphorus uptake by rice (Oryza sativa) growing under varying phosphorus and iron concentrations[J]. Annals of Applied Biology, 2006,149(3):305-312. |
[16] | Xu D F, Xu J M, He Y, et al. Effect of iron plaque formation on phosphorus accumulation and availability in the rhizosphere of wetland plants[J]. Water, Air, and Soil Pollution, 2009,200(1-4):79-87. |
[17] | 刘文菊, 尹君, 毕淑芹, 等. 根表铁膜对水稻吸收污灌土壤中的锌的影响[J]. 土壤与环境, 2001(4):270-272. |
[18] | Khan N, Seshadri B, Bolan N, et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants[J]. Advances in Agronomy, 2016,138:1-96. |
[19] |
Hori T, Müller A, Igarashi Y, et al. Identification of ironreducing microorganisms in anoxic rice paddy soil by 13C- acetate probing [J]. The ISME Journal, 2010,4(2):267-278.
DOI URL PMID |
[20] |
Huang B, Yu K, Gambrell R P. Effects of ferric iron reduction and regeneration on nitrous oxide and methane emissions in a rice soil[J]. Chemosphere, 2009,74(4):481-486.
DOI URL PMID |
[21] |
Liu S W, Zhang L, Liu Q H, et al. Fe(III) fertilization mitigating net global warming potential and greenhouse gas intensity in paddy rice-wheat rotation systems in China[J]. Environmental Pollution, 2012,164:73-80.
DOI URL PMID |
[22] | 任杰, 唐璐, 陈菊培, 等. 水合氧化铁提前施用对持续淹水条件下水稻甲烷的减排效应[J]. 热带作物学报, 2018,39(4):635-640. |
[23] | 范树国, 张再君, 刘林, 等. 中国野生稻的种类、地理分布及其特征特性综述[J]. 武汉植物学研究, 2000(5):417-425. |
[24] | 王晓玲, 郭安平, 孔华, 等. 海南主要普通野生稻的调查及利用RAPD技术进行鉴别分析[J]. 广西植物, 2008(6):741-745, 749. |
[25] | 徐中亮, 李厚奇, 何美丹, 等. 海南普通野生稻居群植被物种多样性研究[J]. 中国农学通报, 2012,28(29):203-207. |
[26] |
Ma J, Takahashi E. Effect of silicon on the growth and phosphorus uptake of rice[J]. Plant and Soil, 1990,126(1):115-119.
DOI URL |
[27] |
Mei X Q, Ye Z H, Wong M H. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw[J]. Environmental Pollution, 2009,157(8-9):2550-2557.
DOI URL PMID |
[28] |
Wu C, Ye Z H, Li H, et al. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice?[J]. Journal of Experimental Botany, 2012,63(8):2961-2970.
DOI URL PMID |
[29] |
Lee C H, Hsieh Y C, Lin Z H, et al. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice[J]. Plant and Soil, 2013,363(1/2):231-241.
DOI URL |
[30] |
傅友强, 杨旭健, 吴道铭, 等. 磷素对水稻根表红棕色铁膜的影响及营养效应[J]. 中国农业科学, 2014,47(6):1072-1085.
DOI URL |
[31] |
Holzschuh M J, Carlos F S, Carmona F D C, et al. Iron oxidation on the surface of adventitious roots and its relation to aerenchyma formation in rice genotypes[J]. Revista Brasileira de Ciência do Solo, 2014,38(1):185-192.
DOI URL |
[32] |
Rebouillat J, Dievart A, Verdeil J L, et al. Molecular genetics of rice root development[J]. Rice, 2009,2(1):15-34.
DOI URL |
[33] | Kirk G J D, Greenway H, Atwell B J, et al. Adaptation of rice to flooded soils[M]// Progress in Botany. Springer Berlin Heidelberg, 2014,75:215-253. |
[34] | 蔡妙珍, 罗安程, 章永松, 等. 水稻根表铁膜对磷的富集作用及其与水稻磷吸收的关系[J]. 中国水稻科学, 2003(2):94-97. |
[35] | 高立志, 张寿洲, 周毅, 等. 中国野生稻的现状调查[J]. 生物多样性, 1996(3):38-44. |
[36] |
Colmer T D. Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots[J]. Plant Cell and Environment, 2003,26(1):17-36.
DOI URL |
[37] |
Gonin M, Bergougnoux V, Nguyen T D, et al. What makes adventitious roots?[J]. Plants, 2019,8(7):240.
DOI URL |
[38] |
Muller B, Guédon Y, Passot S, et al. Lateral roots: random diversity in adversity[J]. Trends in Plant Science, 2019,24(9):810-825.
URL PMID |
[39] |
Yamauchi T, Abe F, Tsutsumi N, et al. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging[J]. Frontiers in Plant Science, 2019,10:259.
DOI URL PMID |
[40] |
Beckett P M, Armstrong W, Armstrong J. Mathematical modelling of methane transport by phragmites: the potential for diffusion within the roots and rhizosphere[J]. Aquatic Botany, 2001,69(2/4):293-312.
DOI URL |
[41] | Armstrong W, Armstrong J. Plant internal oxygen transport (diffusion and convection) and measuring and modelling oxygen gradients[M] //van Dongen J T, F Licausi F. Low-oxygen stress in plants. Oxygen sensing and adaptive responses to hypoxia. Berlin: Springer Vienna, 2014: 267-297. |
[1] | REN Jie, TANG Lu, CHEN Jupei, DAN Jianguo. The Effect of Pre-application of Ferrihydrite on Mitigation of Methane Emission from Rice Paddy Soil under Continuous Flooding [J]. Chinese Journal of Tropical Crops, 2018, 39(4): 635-640. |
[2] | HUANG Jianbing, REN Jie, TANG Lu, DAN Jianguo . Comparing Iron Plaque Formation on Roots of Different Rice Cultivars and Oryza rufipogon Populations#br# [J]. Chinese Journal of Tropical Crops, 2017, 38(3): 421-425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||