Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (9): 1928-1938.DOI: 10.3969/j.issn.1000-2561.2020.09.029
• Agricultural Ecology & Environmental Protection • Previous Articles Next Articles
WEI Yundong1,2,LUO Yanchun1,2,ZHENG Hua1,2,*(),LI Jun1,2,PAN Huan1,2,LEI Kaiwen1,2,XU Chuan1,2
Received:
2019-10-30
Revised:
2019-12-24
Online:
2020-09-25
Published:
2020-10-16
Contact:
ZHENG Hua
CLC Number:
WEI Yundong,LUO Yanchun,ZHENG Hua,LI Jun,PAN Huan,LEI Kaiwen,XU Chuan. Cassava Rhizosphere Soil Collected by “Root Bag” Method and Its Bacteria Diversity[J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1928-1938.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.09.029
编号 No. | 小袋装土量 Soil quantity in root bag/g | 施肥量N∶P2O5∶K2O Rate of fertilizer application N∶P2O5∶K2O/(mg·kg-1) | 土壤质地 Soil texture | 根袋内土样简称 Abbr. of the soil samples in root bag | 根袋外土样简称 Abbr. of the bulk soil |
---|---|---|---|---|---|
1 | 100 | 76.9∶76.9∶76.9 | 粘土 | clay100 | claysoil |
2 | 200 | 76.9∶76.9∶76.9 | 粘土 | clay200 | claysoil |
3 | 300 | 76.9∶76.9∶76.9 | 粘土 | clay300 | claysoil |
4 | 400 | 76.9∶76.9∶76.9 | 粘土 | clay400 | claysoil |
5 | 500 | 76.9∶76.9∶76.9 | 粘土 | clay500 | claysoil |
6 | 100 | 76.9∶76.9∶76.9 | 砂质壤土 | sand100 | sandsoil |
7 | 200 | 76.9∶76.9∶76.9 | 砂质壤土 | sand200 | sandsoil |
8 | 300 | 76.9∶76.9∶76.9 | 砂质壤土 | sand300 | sandsoil |
9 | 400 | 76.9∶76.9∶76.9 | 砂质壤土 | sand400 | sandsoil |
10 | 500 | 76.9∶76.9∶76.9 | 砂质壤土 | sand500 | sandsoil |
Tab.1 Treatments and abbreviation for sample name
编号 No. | 小袋装土量 Soil quantity in root bag/g | 施肥量N∶P2O5∶K2O Rate of fertilizer application N∶P2O5∶K2O/(mg·kg-1) | 土壤质地 Soil texture | 根袋内土样简称 Abbr. of the soil samples in root bag | 根袋外土样简称 Abbr. of the bulk soil |
---|---|---|---|---|---|
1 | 100 | 76.9∶76.9∶76.9 | 粘土 | clay100 | claysoil |
2 | 200 | 76.9∶76.9∶76.9 | 粘土 | clay200 | claysoil |
3 | 300 | 76.9∶76.9∶76.9 | 粘土 | clay300 | claysoil |
4 | 400 | 76.9∶76.9∶76.9 | 粘土 | clay400 | claysoil |
5 | 500 | 76.9∶76.9∶76.9 | 粘土 | clay500 | claysoil |
6 | 100 | 76.9∶76.9∶76.9 | 砂质壤土 | sand100 | sandsoil |
7 | 200 | 76.9∶76.9∶76.9 | 砂质壤土 | sand200 | sandsoil |
8 | 300 | 76.9∶76.9∶76.9 | 砂质壤土 | sand300 | sandsoil |
9 | 400 | 76.9∶76.9∶76.9 | 砂质壤土 | sand400 | sandsoil |
10 | 500 | 76.9∶76.9∶76.9 | 砂质壤土 | sand500 | sandsoil |
Fig.1 Cassava plant height and shoot weight of different soil weight treamtments Different lowercases letters mean significant difference among treatments (P<0.05).
Fig. 2 Soil available nutrients content Different lowercase letters in the same little figure mean significant difference among treatments, P<0.05;*/** means the curve fitting was significant (P<0.05) /extremely significant (P<0.01).
处理Treatment | Shannon | Simpson | ACE | Chao1 |
---|---|---|---|---|
claysoil | 3.93±0.17e | 0.0403±0.0069a | 246.8±48.0c | 249.8±47.5c |
clay100 | 4.47±0.11a | 0.0197±0.0025e | 318.5±29.0a | 319.3±27.5a |
clay300 | 4.22±0.16bc | 0.0292±0.0056bc | 297.4±37.6ab | 298.4±41.6abc |
clay500 | 4.20±0.07bc | 0.0265±0.0031bcd | 301.5±26.6ab | 312.0±33.1ab |
sandsoil | 4.00±0.18de | 0.0333±0.0103ab | 257.6±23.5bc | 263.0±20.1bc |
sand100 | 4.31±0.05ab | 0.0243±0.0023de | 287.0±12.0abc | 295.9±14.1abc |
sand200 | 4.06±0.05cde | 0.0334±0.0038ab | 265.3±14.4bc | 270.6±15.3abc |
sand400 | 4.14±0.06bcd | 0.0290±0.0045bc | 280.6±21.6abc | 288.9±32.1abc |
Tab. 2 α diversity of Bacteria and AMF
处理Treatment | Shannon | Simpson | ACE | Chao1 |
---|---|---|---|---|
claysoil | 3.93±0.17e | 0.0403±0.0069a | 246.8±48.0c | 249.8±47.5c |
clay100 | 4.47±0.11a | 0.0197±0.0025e | 318.5±29.0a | 319.3±27.5a |
clay300 | 4.22±0.16bc | 0.0292±0.0056bc | 297.4±37.6ab | 298.4±41.6abc |
clay500 | 4.20±0.07bc | 0.0265±0.0031bcd | 301.5±26.6ab | 312.0±33.1ab |
sandsoil | 4.00±0.18de | 0.0333±0.0103ab | 257.6±23.5bc | 263.0±20.1bc |
sand100 | 4.31±0.05ab | 0.0243±0.0023de | 287.0±12.0abc | 295.9±14.1abc |
sand200 | 4.06±0.05cde | 0.0334±0.0038ab | 265.3±14.4bc | 270.6±15.3abc |
sand400 | 4.14±0.06bcd | 0.0290±0.0045bc | 280.6±21.6abc | 288.9±32.1abc |
[1] |
Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: The microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013,11(11):789-799.
DOI URL |
[2] | 李侠, 张丽, 杜世杰, 等. 作物种类对根际土壤可培养微生物数量的影响[J]. 园艺与种苗, 2018,38(8):57-60. |
[3] |
Kowalchuk G A, Buma D S, de Boer W, et al. Effects of above-ground plant species composition and diversity on the diversity of soil-bornemicroorganisms[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2002,81(1-4):509-520.
DOI URL |
[4] |
Garbeva P, Van Elsas J D, Van Veen J A, Rhizosphere microbial community and its response to plant species and soil history[J]. Plant and Soil, 2008,302(1-2):19-32.
DOI URL |
[5] |
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiol Ecology, 2009,68(1):1-13.
DOI URL |
[6] |
Garbeva P, Van Veen J A, Van Elsas J D. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004,42:243-270.
DOI URL PMID |
[7] | Broeckling C D, Broz A K, Bergelson J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Evironmental Microbiology, 2008,74(3):738-744. |
[8] | 周文杰, 吕德国, 秦嗣军. 植物与根际微生物相互作用关系研究进展[J]. 吉林农业大学学报, 2016,38(3):253-260. |
[9] | 王学翠, 童晓茹, 温学森, 等. 植物与根际微生物关系的研究进展[J]. 山东科学, 2007(6):40-44, 50. |
[10] | 赵柏霞, 潘凤荣, 韩晓日. 基于高通量测序技术的樱桃根际细菌群落研究[J]. 土壤通报, 2018,49(3):596-601. |
[11] | 颜朗, 张义正, 清源, 等. 马铃薯全生育期内根际微生物组变化规律[J]. 微生物学报, 2020,60(2):246-260. |
[12] |
Zhang F S, Shen J B, Li L, et al. An overview of rhizosphere processes related with plant nutrition in major cropping systems in China[J]. Plant Soil, 2004,260(1/2):89-99.
DOI URL |
[13] | 牛倩云, 韩彦莎, 徐丽霞, 等. 作物轮作对谷田土壤理化性质及谷子根际土壤细菌群落的影响[J]. 农业环境科学学报, 2018,37(12):2802-2809. |
[14] | 聂园军, 李瑞珍, 赵佳, 等. 西瓜连作对根际微生物群落的影响[J]. 中国瓜菜, 2019,32(1):6-11, 3. |
[15] | 郭凤仙, 刘越, 唐丽, 等. 药用植物根际微生物研究现状与展望[J]. 中国农业科技导报, 2017,19(5):12-21. |
[16] | 蔡秋华, 赵正雄, 左进香, 等. 有机肥配施减量化肥对烤烟青枯病及其根际微生物的影响[J]. 烟草科技, 2018,51(11):20-27. |
[17] | 艾超. 长期施肥下根际碳氮转化与微生物多样性研究[D]. 北京: 中国农业科学院, 2015. |
[18] | Hartmann A, Schmid M, Wenzel W, et al. Rhizosphere 2004-Perspectives and Challenges-A Tribute to Lorenz Hiltner[M]. Munich, Germany: GSF-National Research Center for Environment and Health, 2005. |
[19] | Johansson J F, Paul L R, Finlay R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbioloy & Ecology, 2004,48(1):1-13. |
[20] | 唐秀梅, 钟瑞春, 蒋菁, 等. 木薯/花生间作对根际土壤微生态的影响[J]. 基因组学与应用生物学, 2015,34(1):117-124. |
[21] | 徐海强, 黄洁, 刘子凡, 等. 木薯/花生间作对其根际土壤微生物数量、群落结构及多样性的影响[J]. 南方农业学报. 2016,47(2):185-190. |
[22] |
Riley D, Barber S A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface[J]. Soil Science Society of America Journal, 1969,33(6):905-908.
DOI URL |
[23] |
Riley D, Barber S A. Salt accumulation at the soybean [Glycine max (L.) Merr.] root-soil interface[J]. Soil Science Society of America Journal, 1970,34(1):154-155.
DOI URL |
[24] | Steen E. Usefulness of the mesh bag method in quantitative root studies[M]//Atkinson D. Plant Root Growth in an Ecological Perspective. Oxford: Blackwell, 1991: 75-86. |
[25] | 蔡昆争, 骆世明, 段舜山. 水稻根系在根袋处理条件下对氮养分的反应[J]. 生态学报, 2003,23(6):1109-1116. |
[26] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2005. |
[27] |
Li P F, Zhang X C, Hao M D, et al. Effects of vegetation restoration on soil bacterial communities, enzyme activities, and nutrients of reconstructed soil in a mining area on the loess plateau, China[J]. Sustainability, 2019,11(8):1-16.
DOI URL |
[28] |
Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011,12(6):R60.
DOI URL PMID |
[29] | 曾曙才, 苏志尧, 陈北光, 等. 植物根际营养研究进展[J]. 南京林业大学学报(自然科学版), 2003,27(6):79-83. |
[30] | 郭朝晖, 张杨珠, 黄子蔚. 根际微域营养研究进展(二)[J]. 土壤通报, 1999(2):38-41. |
[31] |
Shang S, Yi Y. A Greenhouse assay on the effect of applied urea amount on the rhizospheric soil bacterial communities[J]. Indian Journal of Microbiology, 2015,55(4):406-414.
DOI URL PMID |
[32] | 张士亮, 李鹏. 施肥对土壤微生物多样性的影响[J]. 中国林副特产, 2011(1):95-98. |
[33] | 李从娟, 李彦, 马健, 等. 干旱区植物根际土壤养分状况的对比研究[J]. 干旱区地理, 2011,34(2):222-228. |
[34] | 弋良朋, 马健, 李彦. 荒漠盐生植物根际土壤酶活性的变化[J]. 中国生态农业学报, 2009,17(3):500-505. |
[35] | 张学利, 杨树军, 张百习, 等. 不同林龄樟子松根际与非根际土壤的对比[J]. 福建林学院学报, 2005,25(1):80-84. |
[36] | 李贵宝, 李晓林, 曹一平, 等. 玉米田间根际微区钾养分状况的研究[J]. 土壤通报, 1999,30(2):3-5. |
[37] | 许曼丽, 刘芷宇. 土壤-根系微区养分状况的研究Ⅱ. 钾离子的富集与亏缺[J]. 土壤学报, 1983,20(3):295-302. |
[38] | 曹一平, 徐永泰, 李晓林. 小麦根际微区钾养分状况的研究[J]. 北京农业大学学报, 1991(2):69-74. |
[39] | 刘珊珊, 韦鑫, 盛福瑞, 等. 棉花不同发育时期根际微生物的动态变化[J]. 浙江农业学报, 2019,31(8):1361-1371. |
[40] |
Ying Y X, Ding W L, Li Y. Characterization of soil bacterial communities in rhizospheric and nonrhizospheric soil of Panax ginseng[J]. Biochemical Genetics, 2012,50(11-12):848-859.
DOI URL |
[41] | 叶文雨, 廖海萍, 许钰滢, 等. 基于高通量测序技术分析2种菌草根际土壤细菌群落多样性[J]. 热带作物学报, 2019,40(9):1783-1788. |
[42] | 蔡训辉, 王如意, 胡胜男, 等. 鞘氨醇杆菌的研究进展[J]. 基因组学与应用生物学, 2020,39(5):2096-2102. |
[43] | 高雪峰. 短花针茅荒漠草原优势植物根系分泌物及其主要组分对土壤微生物的影响[D]. 呼和浩特: 内蒙古农业大学, 2017. |
[44] | 李明, 胡云, 黄修梅, 等. 生物炭对设施黄瓜根际土壤养分和菌群的影响[J]. 农业机械学报, 2016,47(11):172-178. |
[45] | 刘金泉, 李明, 胡云, 等. 高粱绿肥种植密度对设施黄瓜根系生长相关因子的影响[J]. 农业机械学报, 2018,49(5):323-329. |
[46] | 于涵. 硅藻页岩对水稻根际土壤及微生物群落的影响[D]. 哈尔滨: 哈尔滨师范大学, 2019. |
[1] | NONG Zemei,SHI Guoying,ZENG Quan,YE Xuelian,QIN Huadong,HU Chunjin. Analysis on Enzyme Activity and Microbial Community Diversity in Rhizosphere Soil of Different Sugarcane Varieties [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 819-828. |
[2] | ZHENG Hua, WEI Yundong, LI Jun , PAN Huan, WEN Feng, LEI Kaiwen. Effects of Slow-released Nitrogen Fertilizer and Arbuscular Mycorrhizal Fungi on Cassava Growth and Soil Nitrogen Indices [J]. Chinese Journal of Tropical Crops, 2018, 39(10): 1893-1900. |
[3] | WU Min WEI Jiashao SUN Haidong HE Peng WU Bingsun GAO Le. The Improvement of Plant Materials and Their Biochars on Acidic Soil [J]. Chinese Journal of Tropical Crops, 2016, 37(12): 2276-2282. |
[4] | JING Tao ZHOU Dengbo WANG Lixia HE Yingdui CHEN Yufeng WANG Fei WANG Bizun. Effects of Carbon-Nitrogen Ratios in Fermentation Broths from Different Organic Fertilizers on Banana Functional Diversity of Soil [J]. Chinese Journal of Tropical Crops, 2016, 37(11): 2063-2070. |
[5] | TAN Yanhua WANG Jungang ZHANG Shuzhen WANG Jun PENG Cunzhi YI Xiaoping. Effect of Inorganic Pyrophosphorylase Transgenic Sugarcane on Microbial Community Diversity in Rhizosphere Soil [J]. Chinese Journal of Tropical Crops, 2012, 33(6): 1063-1067. |
[6] | LUO Xuehua GUO Haichao WANG Wenbing WU Xiaoping BEI Meirong. Simultaneous Measurement of Available Phosphorus and Potassium in Latoso Soil by Continuous Flow Autoanalyzer with Mehlich 3 Extractants [J]. Chinese Journal of Tropical Crops, 2011, 32(7): 1265-1271. |
[7] | DENG Xiao LI Qinfen HOU Xianwen HONG Kui. The Ecological Characteristics of Culturable Microbes Isolated from Infected Soil by Fusarium wilt of Banana [J]. Chinese Journal of Tropical Crops, 2011, 32(2): 283-288. |
[8] | RUAN Chuanqingl CHEN Janli LIU Bol CHEN Yanping HAN Wenfr. Phospholipid Fatty Acid Analysis on the Soil Microbial Communities in the Root Zones of Averrhoa carambola Linn and Litchi chinensis Sonn. [J]. Chinese Journal of Tropical Crops, 2011, 32(10): 1903-1909. |
[9] | Lu Ying He Chunping Wu Weihuai Fan Zhiwei. Effect of Transgenic Banana Plants on the Microorganism in the Soil [J]. Chinese Journal of Tropical Crops, 2008, 29(1): 38-41. |
[10] | Dong Jianhua Wang Bingzhong. NITRATE REDUCTASE ACTIVITY IN HEVEA BRASILIENSIS AND ITS RESPONSE TO RARE EARTH FERTILIZATION [J]. Chinese Journal of Tropical Crops, 1994, 15(1): 17-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||