Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (11): 2165-2175.DOI: 10.3969/j.issn.1000-2561.2020.11.004
• Omics & Biotechnology • Previous Articles Next Articles
PAN Heli1,PAN Tengfei1,SHE Wenqin1,XU Shirong1,LI Xiaoting1,HUANG Hantang1,CHEN Yuan2,WU Shaohua1,*(),PAN Dongming1,*(
)
Received:
2020-04-24
Revised:
2020-07-16
Online:
2020-11-25
Published:
2020-12-23
Contact:
WU Shaohua,PAN Dongming
CLC Number:
PAN Heli,PAN Tengfei,SHE Wenqin,XU Shirong,LI Xiaoting,HUANG Hantang,CHEN Yuan,WU Shaohua,PAN Dongming. Transcriptome Analysis of Carotenoid Metabolism Differential Genes in Pomelo Bud Strain[J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2165-2175.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.11.004
基因ID Gene ID | 基因序列Genes sequence | 引物序列(5°-3°)Primers sequence (5°-3°) |
---|---|---|
Cg2g000880 | F: AGGGCATGAGAATGGACACA | R: CACCGGAACACTCATTAGGC |
Cg3g011400 | F: TACGGGCTTCTTTGGACACT | R: GCCCAGCTCCAATAATAGCG |
Cg1g004260 | F: GGTTACGACTTGCTGACACC | R: CATTACTCCGCCTCCAGGAT |
Cg3g000740 | F: TCGGGACAAGTGTGATGTGA | R: AATAGAGCTGCGGAATGGGA |
Cg7g023370 | F: TCGGAGCACGAAATGGAGTA | R: GAGCGAAGTTACCGGAGAGA |
Cg5g030510 | F: CGTTGGCTGCAAGTTCCATA | R: TAACTGGGAGCACGTTGACT |
Cg5g016320 | F: CTGCCAGAACCTTCCCACTA | R: CGTCTCCGTCGAAGAAATGG |
Cg2g044950 | F: GAACAAGAAGTCCCGGTTCG | R: TTCATCAGTTTCCGGCTCCT |
Cg8g011320 | F: TCTCAAGCGTTGACCCTTCT | R: ACTTGGTCAAGCTCAGGGTT |
Cg6g020290 | F: TTCATGCCATTTGGGAACGG | R: TGGGCTAATCTGATGGGCAA |
Cg1g024280 | F: CAGACGGATTCGAGTTGCC | R: CCATTTGGGCACACTTTGGA |
Cg9g020260 | F: ACTTCCCAAGTTTGCTGGC | R: TGGCCTCAGGTAGTTCATCC |
Cg4g000690 | F: AAACGTCAAGAGCACTGAC | R: CCGGTGATAGCAGAGGACAT |
Cg5g010410 | F: CTCCTTCATCGGTCCCAGT | R: TGAGGCCTGTGTCTTGTGAA |
Cg2g039290 | F: GGGCTGACTCCTTAACTGT | R: AAGGAACAGCACATGATCGC |
Cg6g006420 | F: GGAAGACGGTTGGTGATGTG | R: GAGTCGATGAGCCTCTCTT |
Cg2g021370 | F: AGCTGGTGGTTCACTACCTC | R: GTTGCCTTAGCTGGAAGCTC |
Cg5g039890 | F: GGAGCCTTGGAACAGGTACT | R: TGGCGAAATTGGTTGAAGGG |
Cg9g001010 | F: AACCCAGCTACTCCCAACTC | R: ATCGTCATCACCAGCTTTGC |
Cg6g008620 | F: TTTGCGTCAAAGACAGGCAA | R: CTTCGAGCAGACGGGAAATG |
Cg3g014620 | F: CCTGTTTCCGAACAGAGCAA | R: TTCACAAGTTGAGGCTGCTG |
Cg4g019190 | F: GCCGATCATGCTCAACTTCA | R: CTGAGGCCAGCAGGAATAGA |
Cg2g021360 | F: GGTTCAGAGTGGGCTTAGGA | R: TCAACCGGGCTACAGAAGTT |
Cg7g016010 | F: GCATCGGAGATGAGGAGGAA | R: GCAAAGCATCCAAGGCTACA |
Cg8g017110 | F: TCCTTGCCCAAGGTGAGAAA | R: TGAGCATGGCTTCGGATTTG |
Cg1g007400 | F: CCCAGTGGATGGATCCTTGA | R: TGACGTGTCAACCTCTGGAA |
Cg6g024730 | F: CCGGTGTATCGAGGATCAGT | R: GGTCATCAACTTCCCTGTGC |
Cg5g022640 | F: ACGTTCATGGGTCACCTTCA | R: ACTCCGACACCGTTTGATCT |
Tab. 1 Primers for real-time quantitative PCR analysis
基因ID Gene ID | 基因序列Genes sequence | 引物序列(5°-3°)Primers sequence (5°-3°) |
---|---|---|
Cg2g000880 | F: AGGGCATGAGAATGGACACA | R: CACCGGAACACTCATTAGGC |
Cg3g011400 | F: TACGGGCTTCTTTGGACACT | R: GCCCAGCTCCAATAATAGCG |
Cg1g004260 | F: GGTTACGACTTGCTGACACC | R: CATTACTCCGCCTCCAGGAT |
Cg3g000740 | F: TCGGGACAAGTGTGATGTGA | R: AATAGAGCTGCGGAATGGGA |
Cg7g023370 | F: TCGGAGCACGAAATGGAGTA | R: GAGCGAAGTTACCGGAGAGA |
Cg5g030510 | F: CGTTGGCTGCAAGTTCCATA | R: TAACTGGGAGCACGTTGACT |
Cg5g016320 | F: CTGCCAGAACCTTCCCACTA | R: CGTCTCCGTCGAAGAAATGG |
Cg2g044950 | F: GAACAAGAAGTCCCGGTTCG | R: TTCATCAGTTTCCGGCTCCT |
Cg8g011320 | F: TCTCAAGCGTTGACCCTTCT | R: ACTTGGTCAAGCTCAGGGTT |
Cg6g020290 | F: TTCATGCCATTTGGGAACGG | R: TGGGCTAATCTGATGGGCAA |
Cg1g024280 | F: CAGACGGATTCGAGTTGCC | R: CCATTTGGGCACACTTTGGA |
Cg9g020260 | F: ACTTCCCAAGTTTGCTGGC | R: TGGCCTCAGGTAGTTCATCC |
Cg4g000690 | F: AAACGTCAAGAGCACTGAC | R: CCGGTGATAGCAGAGGACAT |
Cg5g010410 | F: CTCCTTCATCGGTCCCAGT | R: TGAGGCCTGTGTCTTGTGAA |
Cg2g039290 | F: GGGCTGACTCCTTAACTGT | R: AAGGAACAGCACATGATCGC |
Cg6g006420 | F: GGAAGACGGTTGGTGATGTG | R: GAGTCGATGAGCCTCTCTT |
Cg2g021370 | F: AGCTGGTGGTTCACTACCTC | R: GTTGCCTTAGCTGGAAGCTC |
Cg5g039890 | F: GGAGCCTTGGAACAGGTACT | R: TGGCGAAATTGGTTGAAGGG |
Cg9g001010 | F: AACCCAGCTACTCCCAACTC | R: ATCGTCATCACCAGCTTTGC |
Cg6g008620 | F: TTTGCGTCAAAGACAGGCAA | R: CTTCGAGCAGACGGGAAATG |
Cg3g014620 | F: CCTGTTTCCGAACAGAGCAA | R: TTCACAAGTTGAGGCTGCTG |
Cg4g019190 | F: GCCGATCATGCTCAACTTCA | R: CTGAGGCCAGCAGGAATAGA |
Cg2g021360 | F: GGTTCAGAGTGGGCTTAGGA | R: TCAACCGGGCTACAGAAGTT |
Cg7g016010 | F: GCATCGGAGATGAGGAGGAA | R: GCAAAGCATCCAAGGCTACA |
Cg8g017110 | F: TCCTTGCCCAAGGTGAGAAA | R: TGAGCATGGCTTCGGATTTG |
Cg1g007400 | F: CCCAGTGGATGGATCCTTGA | R: TGACGTGTCAACCTCTGGAA |
Cg6g024730 | F: CCGGTGTATCGAGGATCAGT | R: GGTCATCAACTTCCCTGTGC |
Cg5g022640 | F: ACGTTCATGGGTCACCTTCA | R: ACTCCGACACCGTTTGATCT |
果实发育阶段Fruit development at different stages | GX | HR | SH | ||||||
---|---|---|---|---|---|---|---|---|---|
差异基因总数 ALL DEGs | 上调数 Up- regulated | 下调数Down- regulated | 差异基因总数 ALL DEGs | 上调数 Up- regulated | 下调数 Down- regulated | 差异基因总数 ALL DEGs | 上调数Up- regulated | 下调数Down- regulated | |
80 d/120 d | 3182 | 1322 | 1860 | 2896 | 1240 | 1656 | 2784 | 1127 | 1657 |
120 d/180 d | 1673 | 952 | 721 | 3094 | 1304 | 1790 | 3020 | 1162 | 1858 |
80 d/180 d | 4301 | 2008 | 2293 | 4158 | 1571 | 2587 | 3834 | 1375 | 2459 |
80 d/120 d/180 d | 619 | 651 | 632 |
Tab. 2 Differentially expressed genes at fruit developmental stages in three pomelo cultivars
果实发育阶段Fruit development at different stages | GX | HR | SH | ||||||
---|---|---|---|---|---|---|---|---|---|
差异基因总数 ALL DEGs | 上调数 Up- regulated | 下调数Down- regulated | 差异基因总数 ALL DEGs | 上调数 Up- regulated | 下调数 Down- regulated | 差异基因总数 ALL DEGs | 上调数Up- regulated | 下调数Down- regulated | |
80 d/120 d | 3182 | 1322 | 1860 | 2896 | 1240 | 1656 | 2784 | 1127 | 1657 |
120 d/180 d | 1673 | 952 | 721 | 3094 | 1304 | 1790 | 3020 | 1162 | 1858 |
80 d/180 d | 4301 | 2008 | 2293 | 4158 | 1571 | 2587 | 3834 | 1375 | 2459 |
80 d/120 d/180 d | 619 | 651 | 632 |
基因名 Gene name | 基因ID Gene ID | 基因长度 Gene length | 琯溪蜜柚GX | 红肉蜜柚HR | 三红蜜柚SH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
80 d | 120 d | 180 d | 80 d | 120 d | 180 d | 80 d | 120 d | 180 d | |||
PSY | Cg2g000880 | 1155 | 0.05 | 0.02 | 0.17 | 0.28 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
ZDS | Cg3g011400 | 587 | 2.43 | 0.87 | 1.29 | 3.33 | 3.11 | 3.35 | 2.52 | 1.40 | 2.68 |
CRTISO1 | Cg1g004260 | 1698 | 2.08 | 0.70 | 1.69 | 2.65 | 2.14 | 1.82 | 1.70 | 1.29 | 1.67 |
CRTISO2 | Cg3g000740 | 1743 | 0.42 | 0.40 | 0.29 | 0.85 | 0.31 | 0.65 | 0.81 | 0.22 | 0.74 |
CCD4 | Cg7g023370 | 1788 | 78.78 | 94.48 | 159.88 | 116.83 | 109.13 | 82.82 | 96.98 | 97.24 | 101.90 |
NPQ1 | Cg5g030510 | 1452 | 0.91 | 1.49 | 1.39 | 1.33 | 0.82 | 1.59 | 1.57 | 0.58 | 1.43 |
NCED3 | Cg5g016320 | 1821 | 6.97 | 4.91 | 4.93 | 18.95 | 3.66 | 2.27 | 11.78 | 1.31 | 2.13 |
NCED5 | Cg2g044950 | 1830 | 93.53 | 130.10 | 52.13 | 62.55 | 45.50 | 156.30 | 92.87 | 24.02 | 179.20 |
AAO3 | Cg8g011320 | 4143 | 6.730 | 4.772 | 1.787 | 8.991 | 5.595 | 1.800 | 7.720 | 4.540 | 2.290 |
CYP707A1 | Cg6g020290 | 1413 | 18.51 | 32.73 | 144.59 | 37.64 | 96.74 | 8.84 | 13.06 | 93.23 | 49.39 |
Tab. 3 Expression profiles of carotenoid biosynthesis-related genes at fruit developmental stages in three pomelo cultivars
基因名 Gene name | 基因ID Gene ID | 基因长度 Gene length | 琯溪蜜柚GX | 红肉蜜柚HR | 三红蜜柚SH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
80 d | 120 d | 180 d | 80 d | 120 d | 180 d | 80 d | 120 d | 180 d | |||
PSY | Cg2g000880 | 1155 | 0.05 | 0.02 | 0.17 | 0.28 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 |
ZDS | Cg3g011400 | 587 | 2.43 | 0.87 | 1.29 | 3.33 | 3.11 | 3.35 | 2.52 | 1.40 | 2.68 |
CRTISO1 | Cg1g004260 | 1698 | 2.08 | 0.70 | 1.69 | 2.65 | 2.14 | 1.82 | 1.70 | 1.29 | 1.67 |
CRTISO2 | Cg3g000740 | 1743 | 0.42 | 0.40 | 0.29 | 0.85 | 0.31 | 0.65 | 0.81 | 0.22 | 0.74 |
CCD4 | Cg7g023370 | 1788 | 78.78 | 94.48 | 159.88 | 116.83 | 109.13 | 82.82 | 96.98 | 97.24 | 101.90 |
NPQ1 | Cg5g030510 | 1452 | 0.91 | 1.49 | 1.39 | 1.33 | 0.82 | 1.59 | 1.57 | 0.58 | 1.43 |
NCED3 | Cg5g016320 | 1821 | 6.97 | 4.91 | 4.93 | 18.95 | 3.66 | 2.27 | 11.78 | 1.31 | 2.13 |
NCED5 | Cg2g044950 | 1830 | 93.53 | 130.10 | 52.13 | 62.55 | 45.50 | 156.30 | 92.87 | 24.02 | 179.20 |
AAO3 | Cg8g011320 | 4143 | 6.730 | 4.772 | 1.787 | 8.991 | 5.595 | 1.800 | 7.720 | 4.540 | 2.290 |
CYP707A1 | Cg6g020290 | 1413 | 18.51 | 32.73 | 144.59 | 37.64 | 96.74 | 8.84 | 13.06 | 93.23 | 49.39 |
Fig. 5 Correlation between carotenoid synthesis genes and transcription factors The horizontal row represents the transcription factor, and the vertical row represents the gene of the carotenoid synthesis; in the figure, blue represents a negative correlation, red represents a positive correlation, and the darker the color, the higher the correlation; + means P<0.05, * means P<0.01.
[1] | 李伟明. 柚果实生长发育过程中类胡萝卜素的分离及其积累研究[D]. 福州: 福建农林大学, 2013. |
[2] | 余磊. 柚果实类胡萝卜素合成途径的研究[D]. 福州: 福建农林大学, 2018. |
[3] | 陈德欣. 红肉蜜柚β-胡萝卜素合成途径相关酶基因的克隆[D]. 福州: 福建农林大学, 2007. |
[4] | 扶丽红. 柚COMT基因的克隆与表达研究[D]. 福州: 福建农林大学, 2015. |
[5] | 王霞. 柑橘精细定位平台构建及其在多胚和色泽芽变研究中的应用[D]. 武汉: 华中农业大学, 2018. |
[6] |
Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotection, visual attraction, and human health[J]. The Plant Cell, 1995,7(7):1027-1038.
DOI URL PMID |
[7] | Sieber P, Petrascheck M, Barberis A, et al. Organ polarity in Arabidopsis NOZZLE physically interacts with members of the YABBY family[J]. Plant Physiolgy, 2004,135(4):2172-2185. |
[8] | 余磊, 潘腾飞, 张蒙, 等. ‘三红蜜柚’果实类胡萝卜素合成途径部分酶基因的克隆及表达分析[J]. 热带作物学报, 2018,39(10):1990-1998. |
[9] | 赵晓玲, 佘文琴, 林慧颖. 不同套袋处理对琯溪蜜柚果实品质的影响[J]. 中国南方果树, 2012,41(4):62-64. |
[10] |
Rodrigo M, Marcos J F, Zacarías L. Biochemical and molecular analysis of carotenoid biosynjournal in flavedo of orange (Citrus sinensis L.) during fruit development and maturation[J]. Journal of Agricultural & Food Chemistry, 2004,52(22):6724-6731.
DOI URL PMID |
[11] |
Chen C X, Costa M G C, Yu Q B, et al. Identification of novel members in sweet orange carotenoid biosynjournal gene families[J]. Tree Genetics & Genomes, 2010,6(6):905-914.
DOI URL |
[12] |
Isaacson T, Ronen G, Zamir D, et al. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants[J]. The Plant Cell, 2002,14(2):333-342.
DOI URL PMID |
[13] |
Gonzalez-Jorge S, Ha S-H, Magallanes-Lundback M, et al. Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds[J]. The Plant Cell, 2013,25(12):4812-4826.
DOI URL PMID |
[14] |
Ohmiya A, Kishimoto S, Aida R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals[J]. Plant Physiology, 2006,142(3):1193-1201.
DOI URL PMID |
[15] |
Brandi F, Bar E, Mourgues F, et al. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology, 2011,11(1):24.
DOI URL |
[16] |
Falchi R, Vendramin E, Zanon L, et al. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach[J]. The Plant Journal: For Cell and Molecular Biology, 2013,76(2):175-187.
DOI URL |
[17] |
Ma G, Zhang L C, Matsuta A, et al. Enzymatic formation of β-citraurin from β-cryptoxanthin and zeaxanthin by carotenoid cleavage dioxygenase4 in the flavedo of citrus fruit[J]. Plant Physiology, 2013,163(2):682-695.
DOI URL |
[18] |
Rodrigo M J, Alquézar B, Alós E, et al. novel carotenoid cleavage activity involved in the biosynjournal of citrus fruit-specific apocarotenoid pigments[J]. Journal of Experimental Botany, 2013,64(14):4461-4478.
DOI URL PMID |
[19] |
Zheng X J, Zhu K J, Sun Q, et al. Natural variation in CCD4 promoter underpins species-specific evolution of red coloration in citrus peel[J]. Molecular Plant, 2019,12(9):1294-1307.
DOI URL PMID |
[20] |
Xia H, Wu S, Ma F W. Cloning and expression of two 9-cis-epoxycarotenoid dioxygenase genes during fruit development and under stress conditions from Malus[J]. Molecular Biology Reports, 2014,41(10):6795-6802.
DOI URL |
[21] |
Li R, Zhai H, Kang C, et al. De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynjournal[J]. International Journal of Genomics, 2015: 843802.
DOI URL PMID |
[22] | Zhou Y, Tang Y, Tan X, et al. Effects of exogenous ABA, GA3 and cell-wall-degrading enzyme activity, carotenoid content in ripening mango fruit[J]. Acta Phytophysiologica Sinica, 1996,22(4):421-426. |
[23] |
Cantín C M, Fidelibus M W, Crisosto C H. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘crimson seedless’ grapes[J]. Postharvest Biology and Technology, 2007,46(3):237-241.
DOI URL |
[24] |
Wheeler S, Loveys B, Ford C, et al. The relationship between the expression of abscisic acid biosynjournal genes, accumulation of abscisic acid and the promotion of Vitisvinifera L. berry ripening by abscisic acid[J]. Australian Journal of Grape and Wine Research, 2009,15(3):195-204.
DOI URL |
[25] |
Zhang J, Guo S G, Ren Y, et al. High-level expression of a novel chromoplast phosphate transporter ClPHT4; 2 is required for flesh color development in watermelon[J]. New Phytologist, 2017,213(3):1208-1221.
DOI URL |
[26] |
Du H, Wang N L, Cui F, et al. Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synjournal in rice[J]. Plant Physiology, 2010,154(3):1304-1318.
DOI URL PMID |
[27] |
Toledo-Ortiz G, Huq E, Rodríguez-Concepción M. Direct regulation of phytoene synthase gene expression and carotenoid biosynjournal by phytochrome-interacting factors[J]. Proc Natl Acad Sci USA, 2010,107(25):11 626-11 631.
DOI URL |
[28] |
Welsch R, Maass D, Voegel T, et al. Transcription factor RAP2.2 and its interacting partner SINAT2: Stable elements in the carotenogenesis of Arabidopsis leaves[J]. Plant Physiol, 2007,145(3):1073-1085.
DOI URL PMID |
[29] |
Grassi S, Piro G, Lee J M, et al. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit[J]. BMC Genomics, 2013,14(1):781.
DOI URL |
[30] |
Zhu M K, Chen G P, Zhou S, et al. A new tomato NAC(NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation[J]. Plant and Cell Physiology, 2014,55(1):119-135.
DOI URL PMID |
[31] |
Mahjoub A, Hernould M, Joubès J, et al. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism[J]. Plant Physiology and Biochemistry, 2009,47(7):551-561.
DOI URL PMID |
[32] |
Zhu F, Luo T, Liu C Y, et al. An R2R3-MYB transcription factor represses the transformation of alpha- and beta-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 inflavedo of citrus reticulate[J]. New Phytologist, 2017,216:178-192.
DOI URL |
[1] | ZHANG Yuhang,PAN Ranran,LI Fei,TAO Zhiqiang,WANG Ying,GAO Heqiong,ZHUANG Nansheng. Cloning, Physical Location and Expression Analysis of HbGRF in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1723-1732. |
[2] | YANG Qian,YANG Ziping,ZHOU Yali,CHEN Dongquan,LIU Heng. Screening of Stable Reference Genes for qRT-PCR Analysis in Macadamia integrifolia [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1505-1512. |
[3] | ZHENG Liting,YU Xudong,CAI Zeping,LUO Jiajia,WU Fanhua,DONG Junna,CAO Peina. Transcriptome Analysis of Primary Stem of Chlorophyll Deficient Mutants from Artocarpus heterophyllus [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1513-1221. |
[4] | ZHANG Jinlian,LIU Jinhua,BAO Han,LI Dongping,SONG Juan,HUANG Jinghua,CHEN Tingsu. A Study to Develop an in Vitro Dual Culture System with Carrot Hairy Roots and Arbuscular Mycorrhizal Fungi [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1535-1542. |
[5] | WANG Kai,WANG Yi,QU Aiai,WANG Rui,GUO Hailin,LI Xiaohui,SHE Jianming,ZONG Junqin,LI Jianjian,LIU Jianxiu. Establishment of Genetic Transformation System for Zoysia matrella [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1566-1573. |
[6] | YA Huiyuan,CHEN Ye,ZHANG Yansong,XU Qitai. Analysis of Transcriptome Characteristics of Areca at Different Developmental Stages [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1279-1287. |
[7] | PAN Min,YU Xudong,CAI Zeping,LI Jiajia,LUO Jiajia,ZHOU Dan,CHU Wenqing,QU Qian. Transcriptome Data Analysis of Artocarpus heterophyllus Stems and Leaves [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1288-1297. |
[8] | XIAO Tujian,MA Yuhua,YUAN Qifeng,XIE Pu,MAO Yongya,YAN Jiawen,LIAO Shiqin. Molecular Cloning and Expression Analysis of Rhythms Clock Output Gene HpGI from Hylocereus polyrhizus [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1298-1304. |
[9] | GUAN Lingliang,ZHA Ying,BAI Lin,YU Fulai,CHEN Zhenxia,CHEN Xiaolu,XIE Xiaoli,WANG Kai,HUANG Mei. Bioinformatics Analysis of MYB Transcription Factor Family in Blumea balsamifera [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1305-1312. |
[10] | CHEN Qing,LIANG Xiao,WU Chunling,LIU Ying,XU Xuelian. Genetic Analysis of Resistance of Watermelon Cultivars ‘Heipi’ to Aphis gossypii [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1415-1419. |
[11] | XIE Yuman,ZHANG Tian,CAI Yan,ZHANG Lianhu,ZHANG Dongmei. Functional Analysis of Serine/Threonine Phosphatase MoPpz1 in Magnaporthe oryzae [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1420-1426. |
[12] | WANG Chunfang,YU Xinghua,WANG Xianhong,YANG Qinghui. Genetic Diversity Analysis Based on Main Phenotypic Characteristics of Erianthus arundinaceum Germplasm from Different Regions [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1108-1116. |
[13] | BAI Lin,GUAN Lingliang,ZHA Ying,YU Fulai,WANG Kai,XIE Xiaoli,PANG Yuxin,CHEN Songbi. Bioinformatics Analysis of Dehydrogenase Genes Family from the Blumea balsamifera (L.) DC. [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1145-1153. |
[14] | LI Jing,WANG Zehui,CHEN Li,LIU Yanling,XIA Shuning,LIN Zhanxi. Reference Genes Selection for Quantitative Real-time PCR in Antrodia cinnamomea Mycelium of Different Development Stages [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1160-1166. |
[15] | WANG Mengxin,WU Guohuo,CUI Lin,HAN Baoyu. Enzyme Activity Characteristics and Expression of Cu/Zn-SOD Gene in Tea Flowers [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1167-1173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||