Chinese Journal of Tropical Crops ›› 2023, Vol. 44 ›› Issue (5): 905-913.DOI: 10.3969/j.issn.1000-2561.2023.05.004
Previous Articles Next Articles
CAO Xiulan1, YE Yuting1, MA Tianhao1, HU Anna1, CAO Yu1, CHEN Pengze1, WU Zhuangsheng2,*(), LI Peng1,*(
)
Received:
2022-04-24
Revised:
2022-07-19
Online:
2023-05-25
Published:
2023-06-07
Contact:
*LI Peng,E-mail:CLC Number:
CAO Xiulan, YE Yuting, MA Tianhao, HU Anna, CAO Yu, CHEN Pengze, WU Zhuangsheng, LI Peng. Analysis of the Whole Genome Sequence of Biocontrol Strain Bacillus velezensis HNU24[J]. Chinese Journal of Tropical Crops, 2023, 44(5): 905-913.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2023.05.004
Fig. 1 Circle diagram of HNU24 genome 1st circle (circles from outer to inner): Genome size; 2nd circle: Forward strand gene; 3rd circle: Reverse strand gene; 4th circle: Forward strand ncRNA; 5th circle: Reverse strand ncRNA; 6th circle: Repeat sequences; 7th circle: GC percent; 8th circle: GC-SKEW.
CAZy酶类家族CAZy enzyme family | 基因亚族(数量)Gene subfamily(quantity) |
---|---|
糖苷水解酶(GHs) | GH43(3)、GH13(1)、GH26(1)、GH32(3)、GH4(1)、GH5(1)、GH51(2)、GH68(1) |
糖苷转移酶(GTs) | GT1(4)、GT2(6)、GT26(1)、GT28(2)、GT4(5)、GT51(4) |
碳水化合物结合模块(CBMs) | CBM50(2) |
碳水化合物酯酶,(CEs) | CE10(1) |
复合类 | GH13/GH31(2)、AA10/CBM73(1)、CBM6/GH43(1)、GH5/GH9(1) |
Tab. 1 CAZy enzyme gene families in genome of HNU24
CAZy酶类家族CAZy enzyme family | 基因亚族(数量)Gene subfamily(quantity) |
---|---|
糖苷水解酶(GHs) | GH43(3)、GH13(1)、GH26(1)、GH32(3)、GH4(1)、GH5(1)、GH51(2)、GH68(1) |
糖苷转移酶(GTs) | GT1(4)、GT2(6)、GT26(1)、GT28(2)、GT4(5)、GT51(4) |
碳水化合物结合模块(CBMs) | CBM50(2) |
碳水化合物酯酶,(CEs) | CE10(1) |
复合类 | GH13/GH31(2)、AA10/CBM73(1)、CBM6/GH43(1)、GH5/GH9(1) |
基因组位点Genomic locus | 产物类型 Product type | 最相似已知基因簇 Most similar known gene cluster | |||||
---|---|---|---|---|---|---|---|
起始位点 Initial site | 结束位点 Terminal site | 最相似产物 Most similar product | 相似度 Similarity/% | 来源 Source | |||
323 652 | 388 511 | 非核糖体多肽类 | 表面活性素 | 91 | B. velezensis FZB42 | ||
722 603 | 747 120 | 含RRE元素的产物簇;含线性唑的肽 | 植物唑霉素 | 100 | B. velezensis FZB42 | ||
942 266 | 983 510 | 聚酮合酶类类似物 | 丁胺菌素A/丁胺菌素B | 7 | Streptomyces sp. A299 1200 | ||
1 069 135 | 1 086 364 | 萜烯类 | — | — | — | ||
1 373 424 | 1 459 809 | 反式AT型酮聚合酶 | 大环内酰亚胺 | 100 | B. velezensis FZB42 | ||
1 683 338 | 1 783 940 | 反式AT型酮聚合酶; 三型聚酮合酶; 非核糖体多肽类 | 杆菌烯 | 100 | B. velezensis FZB42 | ||
1 853 071 | 1 990 508 | 非核糖体多肽类; 反式AT型酮聚合酶; β内酯 | 泛革素 | 100 | B. velezensis FZB42 | ||
2 017 463 | 2 039 346 | 萜烯类 | — | — | — | ||
2 105 832 | 2 146 932 | 三型酮聚合酶 | — | — | — | ||
2 275 725 | 2 369 514 | 反式AT型酮聚合酶 | 地非西丁 | 100 | B. velezensis FZB42 | ||
2 859 258 | 2 907 389 | 非核糖体多肽类 | — | — | — | ||
3 004 381 | 3 056 169 | 非核糖体多肽类; 其他未指杆明的核糖体合成和翻译后修饰的肽产物(RiPP)簇 | 菌毒素 | 100 | B. velezensis FZB42 | ||
2 579 398 | 3 620 816 | 其他 | 杆溶菌素 | 100 | B. velezensis FZB42 |
Tab. 2 Identification results of secondary metabolite synthesis region
基因组位点Genomic locus | 产物类型 Product type | 最相似已知基因簇 Most similar known gene cluster | |||||
---|---|---|---|---|---|---|---|
起始位点 Initial site | 结束位点 Terminal site | 最相似产物 Most similar product | 相似度 Similarity/% | 来源 Source | |||
323 652 | 388 511 | 非核糖体多肽类 | 表面活性素 | 91 | B. velezensis FZB42 | ||
722 603 | 747 120 | 含RRE元素的产物簇;含线性唑的肽 | 植物唑霉素 | 100 | B. velezensis FZB42 | ||
942 266 | 983 510 | 聚酮合酶类类似物 | 丁胺菌素A/丁胺菌素B | 7 | Streptomyces sp. A299 1200 | ||
1 069 135 | 1 086 364 | 萜烯类 | — | — | — | ||
1 373 424 | 1 459 809 | 反式AT型酮聚合酶 | 大环内酰亚胺 | 100 | B. velezensis FZB42 | ||
1 683 338 | 1 783 940 | 反式AT型酮聚合酶; 三型聚酮合酶; 非核糖体多肽类 | 杆菌烯 | 100 | B. velezensis FZB42 | ||
1 853 071 | 1 990 508 | 非核糖体多肽类; 反式AT型酮聚合酶; β内酯 | 泛革素 | 100 | B. velezensis FZB42 | ||
2 017 463 | 2 039 346 | 萜烯类 | — | — | — | ||
2 105 832 | 2 146 932 | 三型酮聚合酶 | — | — | — | ||
2 275 725 | 2 369 514 | 反式AT型酮聚合酶 | 地非西丁 | 100 | B. velezensis FZB42 | ||
2 859 258 | 2 907 389 | 非核糖体多肽类 | — | — | — | ||
3 004 381 | 3 056 169 | 非核糖体多肽类; 其他未指杆明的核糖体合成和翻译后修饰的肽产物(RiPP)簇 | 菌毒素 | 100 | B. velezensis FZB42 | ||
2 579 398 | 3 620 816 | 其他 | 杆溶菌素 | 100 | B. velezensis FZB42 |
[1] | 刘丹丹, 李敏, 刘润进. 我国植物根围促生细菌研究进展[J]. 生态学杂志, 2016, 35(3): 815-824. |
LIU D D, LI M, LIU R J. Research progress of plant rhizosphere growth promoting bacteria in China[J]. Chinese Journal of Ecology, 2016, 35(3): 815-824. (in Chinese) | |
[2] | 穆文强, 康慎敏, 李平兰. 根际促生菌对植物的生长促进作用及机制研究进展[J]. 生命科学, 2022, 34(2): 118-127. |
MU W Q, KANG S M, LI P L. Advances in the growth-promoting effects and mechanisms of inter-rooted growth-promoting bacteria on plants[J]. Life Sciences, 2022, 34(2): 118-127. (in Chinese) | |
[3] | 屈平平. 芽孢杆菌制剂对毛皮动物源大肠杆菌的体外抑制作用[J]. 饲料研究, 2020, 43(9): 82-85. |
QU P P. Inhibitory effect of bacillus preparation on E. coli from fur animals in vitro[J]. Feed Research, 2020, 43(9): 82-85. (in Chinese) | |
[4] | 邓凤如, 陈韵声, 范琳, 赵乐怡, 邓诣群, 文继开. 动物用芽孢杆菌微生态制剂中蜡样芽孢杆菌的分离及安全性[J]. 微生物学通报, 2021, 48(10): 3714-3725. |
DENG F R. CHEN Y S, FAN L, ZHAO L Y, DENG Y Q, WEN J K. Isolation and safety of Bacillus cereus from animal bacillus probiotics[J]. Microbiology China, 2021, 48(10): 3714-3725. (in Chinese) | |
[5] | 蔡高磊, 张凡, 欧阳友香, 赵昌松, 彭宣和, 江爱明. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 2020, 12: 162-167. |
CAI G L, ZHANG F, OUYANG Y X, ZHAO C S, PENG X H, JIANG A M. Research progress of Bacillus velezensis[J]. Northern Horticulture, 2018(12): 162-167. (in Chinese) | |
[6] | 张德锋, 高艳侠, 王亚军, 刘春, 石存斌. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. |
ZHANG D F, GAO Y X, WANG Y J, LIU C, SHI C B. Advances in classification, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 2020, 47(11): 3634-3649. (in Chinese) | |
[7] |
宗英, 赵月菊, 刘阳, 杨庆利. 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究[J]. 核农学报, 2018, 32(2): 310-317.
DOI |
ZHONG Y, ZHAO Y J, LIU Y, YANG Q L. Study on inhibition of Fusarium graminearum by a strain of Bacillus velezensis[J]. Journal of Nuclear Agriculture, 2018, 32(2): 310-317. (in Chinese) | |
[8] | 张琼, ZABIHULLAH S, 唐灿明. 贝莱斯芽孢杆菌SZAD1对大丽轮枝菌的生物防治效果[J]. 棉花学报, 2020, 32(4): 329-338. |
ZHANG Q, ZABIHULLAH S, TANG C M. Biocontrol effect of Bacillus velezensis SZAD1 on Verticillium dahliae[J]. Journal of Cotton, 2020, 32(4): 329-338. (in Chinese) | |
[9] | 夏明聪, 邓晓旭, 齐红志, 谢夏, 徐文, 张洁, 孙润红, 潘娅梅, 武超, 杨丽荣. 贝莱斯芽孢杆菌YB-145对小麦纹枯病的防病及促生作用[J]. 河南农业科学, 2021, 50(10): 76-83. |
XIA M C, DENG X X, QI H Z, XIE X, XU W, ZHANG J, SUN R H, PAN Y M, WU C, YANG L R. Control and growth promoting effects of Bacillus velezensis YB-145 on wheat sheath blight[J]. Henan Agricultural Science, 2021, 50(10): 76-83. (in Chinese) | |
[10] | 李永丽, 周洲, 尹新明. 贝莱斯芽孢杆菌Mr12预防苹果轮纹病等病害的潜力及其全基因组分析[J]. 果树学报, 2021, 38(9): 1459-1467. |
LI Y L, ZHOU Z, YIN X M. Potential and genome-wide analysis of Bacillus velezensis Mr12 for preventing apple ring rot[J]. Journal of Fruit Trees, 2021, 38(9): 1459-1467. (in Chinese) | |
[11] | 杨成, 乔云龙, 刘辉, 潘中武. 贝莱斯芽孢杆菌Y6杀螺活性及其机制的初步研究[J]. 中国血吸虫病防治杂志, 2021, 33(3): 248-253, 261. |
YANG C, QIAO Y L, LIU H, PAN Z W. Preliminary study on the molluscicidal activity and mechanism of Bacillus velezensis Y6[J]. Chinese Journal of Schistosomiasis Control, 2021, 33(3): 248-253, 261. (in Chinese) | |
[12] | 王淋敏. 贝莱斯芽孢杆菌(Bacillus velezensis)促生作用的研究[D]. 雅安: 四川农业大学, 2017. |
WANG L M. Study on the growth promoting effect of Bacillus velezensis[D]. Ya’an: Sichuan Agricultural University, 2017. (in Chinese) | |
[13] |
张荣胜, 戴秀华, 刘永锋, 陈志谊. 解淀粉芽孢杆菌Lx-11的促水稻生长作用及促生长物质分析[J]. 核农学报, 2018, 32(6): 1230-1238.
DOI |
ZHANG R S, DAI X H, LIU Y F, CHEN Z Y. Growth promoting effect of Bacillus amyloliquefaciens Lx-11 on rice and analysis of growth promoting substances[J]. Journal of Nuclear Agriculture, 2018, 32(6): 1230-1238. (in Chinese) | |
[14] | LI P, WANG D, YAN J, ZHOU J N, DENG Y Y, JIANG Z D, CAO B H, HE Z F, ZHANG L H. Genomic analysis of phylotype I strain EP1 reveals substantial divergence from other strains in the Ralstonia solanacearum species complex[J]. Frontiers in Microbiology, 2016, 7: 1719. |
[15] |
CHEN X H, KOUMOUTSI A, SCHOLZ R. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nature Biotechnology, 2007, 25(9): 1007-1014.
DOI |
[16] | 黄鹤, 芦现杰, 胡海峰. Actinoplanes sp. N902-109全基因组序列测定及分析[J]. 中国抗生素杂志, 2015, 40(3): 171-177. |
HUANG H, LU X J, HU H F. Sequencing and analysis of the whole genome of Actinoplanes sp. N902-109[J]. Chinese Journal of Antibiotics, 2015, 40(3): 171-177. (in Chinese) | |
[17] |
EDDY S R. Profile hidden markov Models[J]. Bioinformatics, 1998, 14(9): 755-763.
DOI PMID |
[18] | 戴利铭, 李岚岚, 刘一贤, 施玉萍, 蔡志英. 解淀粉芽孢杆菌生防菌BS-3全基因组测序及生物信息分析[J]. 微生物学通报, 2021, 48(6): 2073-2088. |
DAI L M, LI L L, LIU Y X, SHI Y P, CAI Z Y. Whole genome sequencing and bioinformatics analysis of biocontrol bacterium BS-3 of Bacillus amyloliquefaciens[J]. Microbiology China, 2021, 48(6): 2073-2088. (in Chinese) | |
[19] | 李铭晗, 赵权. 鸡源地衣芽孢杆菌的分离鉴定及全基因组分析[J]. 吉林农业大学学报, 2022, 44(5): 613-623. |
LI M H, ZHAO Q. Isolation, identification and genome analysis of Bacillus licheniformis from chicken[J]. Journal of Jilin Agricultural University, 2022, 44(5): 613-623. | |
[20] | 韩长志, 祝友朋, 许僖. 草芽孢杆菌XF-1的碳水化合物活性酶类(CAZymes)蛋白预测与遗传分析[J]. 河南师范大学学报(自然科学版), 2018, 46(3): 95-100. |
HAN C Z, ZHU Y P, XU X. Carbohydrate active enzymes (cazymes) protein prediction and genetic relationship analysis of Bacillus subtilis XF-1[J]. Journal of Henan Normal University (Natural Science Edition), 2018, 46 (3): 95-100. (in Chinese) | |
[21] | 柳少燕, 陈捷胤, 李蕾, 戴小枫. 拮抗菌与病原菌碳水化合物酶类比较分析[J]. 基因组学与应用生物学, 2013, 32(1): 97-104. |
LIU S Y, CHEN J Y, LI L, DAI X F. Comparative analysis of carbohydrate enzymes between antagonists and pathogens[J]. Genomics and Applied Biology, 2013, 32(1): 97-104. (in Chinese) | |
[22] | 祝友朋, 韩长志. 枯草芽孢杆菌BEST195的碳水化合物酶类(CAZymes)的分布与进化分析[J]. 西南农业学报, 2021, 34(6): 1195-1200. |
ZHU Y P, HAN C Z. Distribution and evolutionary analysis of carbohydrase classes (CAZymes) of Bacillus subtilis BEST195[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(6): 1195-1200. (in Chinese) | |
[23] |
GUIMARÃES C, PASQUALINO I, SOUSA J, NOGUEIRA F, SELDIN L, CASTILHO L, FREIRE D. Bacillus velezensis H2O-1 surfactin efficiently maintains its interfacial properties in extreme conditions found in post-salt and pre-salt oil reservoirs[J]. Colloids and Surfaces B: Biointerfaces, 2021, 208: 112072.
DOI URL |
[24] |
WU J J, CHOU H P, HUANG J W, DENG W L. Genomic and biochemical characterization of antifungal compounds produced by Bacillus subtilis PMB102 against Alternaria brassicicola[J]. Microbiological Research, 2021, 251: 126815.
DOI URL |
[25] |
NANNAN C, VU H, GILLIS A, CAULIER S, NGUYEN T, MAHILLON J. Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against gram-negative foodborne pathogens[J]. Journal of Biotechnology, 2021, 327: 28-35.
DOI URL |
[26] | EREGA A, STEFANIC P, DOGSA I, DANEVČIČ T, ŠIMUNOVIĆ K, KLANCNIK A, SMOLE MOŽINA S, MANDIC M I. Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms[J]. Applied and Environmental Microbiology, 2021, 7(12): e02955-20s. |
[27] |
CHAKRABORTY K, KIZHAKKEKALAM V, JOY M, DHARA S. Difficidin class of polyketide antibiotics from marine macroalga-associated Bacillus as promising antibacterial agents[J]. Applied Microbiology and Biotechnology, 2021, 105(16): 6395-6408.
DOI |
[28] | DIMOPOULOU A, THEOLOGIDIS I, BENAKI D, KOUKOUNIA M, ZERVAKOU A, TZIMA A, HATZINIKOLAOU D, SKANDALIS N. Direct antibiotic activity of bacillibactin broadens the biocontrol range of Bacillus amyloliquefaciens MBI600[J]. mSphere, 2021, 6(40): e00376-e0037621. |
[29] | KALLIMACHOS N, POLINA T, EVANGELIA T E. Genomic analysis and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: a biocontrol agent against botrytis cinerea causing bunch rot in post-harvest table grapes[J]. Plants, 2021 10: 1716. |
[30] |
FAN B, WANG C, SONG X F, DING X L, WU L, WU H J, GAO X W, BORRISS R. Corrigendum: Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2019, 9: 1279.
DOI URL |
[1] | GAO Shengfeng, XU Bishuang, LU Daqian, LIU Aiqin, GOU Yafeng, SUN Shiwei, WANG Zheng, MENG Qianqian. Whole Genome Sequencing and Analysis of the Bio-control Strain Bacillus velezensis Z [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1216-1222. |
[2] | ZHANG Peng, XU Anwei, YANG Guangda, XIAO Jiajie, LI Xiaofei, XU Daping, CUI Zhiyi. Physiological Characteristics of Stress Response Induced by Physical Injury in Aquilaria sinensis [J]. Chinese Journal of Tropical Crops, 2021, 42(12): 3521-3528. |
[3] | QUAN Yunfan,WANG Pei,WANG Hao,YUAN Jingzhe,DAI Haofu,MEI Wenli. Isocoumarin Derivatives from Mangrove-derived Fungus Xylaria sp. HNWSW-2 and the Biological Activities [J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1611-1617. |
[4] | ZHAO Yanjuan,ZHAO Yajuan,LIU Junqi,JIN Tian,CHENG Mao,HUANG Liyu,WANG Zhenzhong,QIN Shiwen. Expression Analysis of Genes Involved in Biosynthesis of Secondary Metabolites for Fusarium oxysporum f. sp. cubense in Response to Three Carbon Sources [J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2440-2446. |
[5] | DENG Jiaai, DAI Haofu, WANG Yuguang, CHEN Huiqin, TAN Zhiqiong, MEI Wenli. Isolation and Identification of the Fungus Aspergillus sp. HNWSW-20 from Chinese Agarwood and Its Secondary Metabolites [J]. Chinese Journal of Tropical Crops, 2018, 39(8): 1618-1624. |
[6] | LIU Lei LIANG Changcong ZENG Di YANG Laying GUO Lijia DING Zhaojian HUANG Junsheng. Research Progress on Secondary Metabolites of Bacillus spp. and Their Applications in Biocontrol of Soil-borne Diseases [J]. Chinese Journal of Tropical Crops, 2017, 38(4): 775-782. |
[7] | ZHANG ZhiHua. Research Advances in Biodiversity of Mangrove Fungi [J]. Chinese Journal of Tropical Crops, 2013, 34(8): 1617-1624. |
[8] | JIANG Zhengzhong SHEN Liang DENG Weiwei YANG Yunqiu WEI Chaoling ZHANG Zhengzhu. Effect of Deltamethrin on the Main Secondary Metabolites in Tea Plant(Camellia sinensis) [J]. Chinese Journal of Tropical Crops, 2013, 34(2): 321-324. |
[9] | Yang Jinsong. Antimicrobial Activity of Secondary Metabolites of Marine Penicillum SPP [J]. Chinese Journal of Tropical Crops, 2002, 23(3): 73-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||