Chinese Journal of Tropical Crops ›› 2023, Vol. 44 ›› Issue (5): 894-904.DOI: 10.3969/j.issn.1000-2561.2023.05.003
• Omics & Biotechnology • Previous Articles Next Articles
LI Xinru, GAO Yu, MIAO Shunan, LI Teng, DONG Shuyan, SHI Xianfei, XUE Jin’ai, JI Chunli(), LI Runzhi(
)
Received:
2022-08-02
Revised:
2022-10-21
Online:
2023-05-25
Published:
2023-06-07
Contact:
*JI Chunli,E-mail:CLC Number:
LI Xinru, GAO Yu, MIAO Shunan, LI Teng, DONG Shuyan, SHI Xianfei, XUE Jin’ai, JI Chunli, LI Runzhi. Identification of Auxin Receptor Gene TIR1 Family in Cyperus esculentus and the Expression Analysis in Response to Salt Stress and Exogenous IBA[J]. Chinese Journal of Tropical Crops, 2023, 44(5): 894-904.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2023.05.003
引物 Primer | 引物序列(5°-3°) Primer sequence (5°-3°) |
---|---|
ORF TIR1-1 F | ATGGCAGATGAACCGGCG |
ORF TIR1-1 R | TTACAAGATCTTAACAAACGGCGG |
ORF TIR1-2 F | ATGCGAGAGGAGATCTCTGACATG |
ORF TIR1-2 R | TTACAAGATCTTAACAAAAGATGGTGC |
ORF TIR1-3 F | ATGTCTGAGGAGGAGGAGGACG |
ORF TIR1-3 R | CTACAATATCTTGACAAATTGCGGT |
ORF TIR1-4 F | ATGAAGGTCCAATCGGCCA |
ORF TIR1-4 R | TTACAGAGTCCATACAAAATCAGGTGC |
qRT TIR1-1 F | CGACACGATTGGAGATGAAGG |
qRT TIR1-1 R | GCGTTGACAGAAGAAGAGGATT |
qRT TIR1-2 F | GCTCGGTCTCGCAGTGATT |
qRT TIR1-2 R | GGCACAACCTACGCAATCG |
qRT TIR1-3 F | GTGCCGTATCCTGTCAACCT |
qRT TIR1-3 R | TCCAGTTCGTCATCCTCATTCA |
qRT TIR1-4 F | TTCGCAGGAGACAGTGACC |
qRT TIR1-4 R | TCCACATTCAACATCGGCATT |
Ce18S rRNA F | CTACGTCCCTGCCCTTTGTACA |
Ce18S rRNA R | ACACTTCACCGGACCATTCAA |
Tab. 1 Primer sequences
引物 Primer | 引物序列(5°-3°) Primer sequence (5°-3°) |
---|---|
ORF TIR1-1 F | ATGGCAGATGAACCGGCG |
ORF TIR1-1 R | TTACAAGATCTTAACAAACGGCGG |
ORF TIR1-2 F | ATGCGAGAGGAGATCTCTGACATG |
ORF TIR1-2 R | TTACAAGATCTTAACAAAAGATGGTGC |
ORF TIR1-3 F | ATGTCTGAGGAGGAGGAGGACG |
ORF TIR1-3 R | CTACAATATCTTGACAAATTGCGGT |
ORF TIR1-4 F | ATGAAGGTCCAATCGGCCA |
ORF TIR1-4 R | TTACAGAGTCCATACAAAATCAGGTGC |
qRT TIR1-1 F | CGACACGATTGGAGATGAAGG |
qRT TIR1-1 R | GCGTTGACAGAAGAAGAGGATT |
qRT TIR1-2 F | GCTCGGTCTCGCAGTGATT |
qRT TIR1-2 R | GGCACAACCTACGCAATCG |
qRT TIR1-3 F | GTGCCGTATCCTGTCAACCT |
qRT TIR1-3 R | TCCAGTTCGTCATCCTCATTCA |
qRT TIR1-4 F | TTCGCAGGAGACAGTGACC |
qRT TIR1-4 R | TCCACATTCAACATCGGCATT |
Ce18S rRNA F | CTACGTCCCTGCCCTTTGTACA |
Ce18S rRNA R | ACACTTCACCGGACCATTCAA |
植物 Plant | 拉丁名 Latin name | 蛋白 Protein | NCBI登录号 NCBI accession |
---|---|---|---|
大豆 | Glycine max | GmTIR1 | XP_006584933.1 |
蓖麻 | Ricinus communis | RcTIR1 | XP_015578180.1 |
花生 | Arachis hypogaea | AhTIR1 | XP_025689973.1 |
野生水稻 | Oryza brachyantha | ObTIR1 | XP_006647937.3 |
椰子 | Cocos nucifera | CnTIR1 | EHA8586401.1 |
康藏嵩草 | Carex littledalei | ClTIR1 | KAF3330046.1 |
油棕 | Elaeis guineensis | EgTIR1 | XP_010942647.1 |
柳枝稷 | Panicum virgatum | PvTIR1 | XP_039787433.1 |
油橄榄 | Olea europaea | OeTIR1 | CAA3002003.1 |
高梁 | Sorghum bicolor | SbTIR1 | XP_002465737.1 |
油菜 | Brassica napus | BnTIR1 | XP_022569407.1 |
穇子 | Eleusine coracana | EcTIR1 | GJN22350.1 |
黑麦草 | Lolium rigidum | LrTIR1 | XP_047075560.1 |
Tab. 2 Basic information of test plant TIR1 protein sequences
植物 Plant | 拉丁名 Latin name | 蛋白 Protein | NCBI登录号 NCBI accession |
---|---|---|---|
大豆 | Glycine max | GmTIR1 | XP_006584933.1 |
蓖麻 | Ricinus communis | RcTIR1 | XP_015578180.1 |
花生 | Arachis hypogaea | AhTIR1 | XP_025689973.1 |
野生水稻 | Oryza brachyantha | ObTIR1 | XP_006647937.3 |
椰子 | Cocos nucifera | CnTIR1 | EHA8586401.1 |
康藏嵩草 | Carex littledalei | ClTIR1 | KAF3330046.1 |
油棕 | Elaeis guineensis | EgTIR1 | XP_010942647.1 |
柳枝稷 | Panicum virgatum | PvTIR1 | XP_039787433.1 |
油橄榄 | Olea europaea | OeTIR1 | CAA3002003.1 |
高梁 | Sorghum bicolor | SbTIR1 | XP_002465737.1 |
油菜 | Brassica napus | BnTIR1 | XP_022569407.1 |
穇子 | Eleusine coracana | EcTIR1 | GJN22350.1 |
黑麦草 | Lolium rigidum | LrTIR1 | XP_047075560.1 |
蛋白 Protein | 氨基酸 Amino acid | 相对分子质量 Molecular weight/kDa | 理论等电点Theoretical pI | 不稳定系数Instability index | 脂肪族指数Aliphatic index | 亲水 系数GRAVY | 跨膜结构Transmembrance structure | 亚细胞定位Subcellalar localization |
---|---|---|---|---|---|---|---|---|
AtTIR1 | 594 | 66.80 | 6.99 | 47.58 | 94.83 | 0.009 | 0 | 细胞核 |
CeTIR1-1 | 589 | 65.67 | 5.13 | 42.64 | 91.88 | -0.050 | 0 | 细胞核 |
CeTIR1-2 | 624 | 70.32 | 5.26 | 45.63 | 92.66 | -0.080 | 0 | 细胞核 |
CeTIR1-3 | 611 | 67.11 | 6.10 | 46.33 | 98.00 | 0.017 | 0 | 细胞核 |
CeTIR1-4 | 599 | 66.37 | 6.72 | 45.34 | 94.06 | -0.041 | 0 | 细胞核 |
Tab. 3 Physicochemical properties of CeTIR1 family proteins from C. esculentus
蛋白 Protein | 氨基酸 Amino acid | 相对分子质量 Molecular weight/kDa | 理论等电点Theoretical pI | 不稳定系数Instability index | 脂肪族指数Aliphatic index | 亲水 系数GRAVY | 跨膜结构Transmembrance structure | 亚细胞定位Subcellalar localization |
---|---|---|---|---|---|---|---|---|
AtTIR1 | 594 | 66.80 | 6.99 | 47.58 | 94.83 | 0.009 | 0 | 细胞核 |
CeTIR1-1 | 589 | 65.67 | 5.13 | 42.64 | 91.88 | -0.050 | 0 | 细胞核 |
CeTIR1-2 | 624 | 70.32 | 5.26 | 45.63 | 92.66 | -0.080 | 0 | 细胞核 |
CeTIR1-3 | 611 | 67.11 | 6.10 | 46.33 | 98.00 | 0.017 | 0 | 细胞核 |
CeTIR1-4 | 599 | 66.37 | 6.72 | 45.34 | 94.06 | -0.041 | 0 | 细胞核 |
蛋白 Protein | α-螺旋 α-helix/% | β-转角 β-turn/% | 延伸链 Extended strand/% | 无规则卷曲 Random coil/% |
---|---|---|---|---|
AtTIR1 | 48.32 | 4.88 | 14.48 | 32.32 |
CeTIR1-1 | 50.42 | 4.58 | 13.24 | 31.75 |
CeTIR1-2 | 50.48 | 3.85 | 13.14 | 32.53 |
CeTIR1-3 | 49.26 | 3.44 | 12.11 | 35.19 |
CeTIR1-4 | 50.25 | 4.34 | 12.52 | 32.89 |
Tab. 4 Secondary structure of CeTIR1 family proteins from C. esculentus
蛋白 Protein | α-螺旋 α-helix/% | β-转角 β-turn/% | 延伸链 Extended strand/% | 无规则卷曲 Random coil/% |
---|---|---|---|---|
AtTIR1 | 48.32 | 4.88 | 14.48 | 32.32 |
CeTIR1-1 | 50.42 | 4.58 | 13.24 | 31.75 |
CeTIR1-2 | 50.48 | 3.85 | 13.14 | 32.53 |
CeTIR1-3 | 49.26 | 3.44 | 12.11 | 35.19 |
CeTIR1-4 | 50.25 | 4.34 | 12.52 | 32.89 |
Fig. 8 Effects of exogenous IBA on antioxidant enzyme activities and MDA content in C. esculentus seedlings under salt stress Different lowercase letters indicate significant difference (P<0.05).
[1] | 王盈希, 吴苏喜, 周利平, 张科红, 李普选. 油莎豆品质分析及加工利用研究进展[J]. 食品工业, 2020, 41(10): 273-276. |
WANG Y X, WU S X, ZHOU L P, ZHANG K H, LI P X. Research progress on quality analysis, processing and utilization of Cyperus esculentus[J]. The Food Industry, 2020, 41(10): 273-276. (in Chinese) | |
[2] |
ADEGUNWA M O, ADELEKAN E O, ADEBOWALE A A, BAKARE H A, ALAMU E O. Evaluation of nutritional and functional properties of plantain (Musa paradisiaca L.) and tigernut (Cyperus esculentus L.) flour blends for food formulations[J]. Cogent Chemistry, 2017, 3(1): 1383707-1383721.
DOI URL |
[3] | 阳振乐. 油莎豆的特性及其研究进展[J]. 北方园艺, 2017(17): 192-201. |
YANG Z L. Characteristics and research progress of Cyperus esculent[J]. Northern Horticulture, 2017(17): 192-201. (in Chinese) | |
[4] | 陈惠宗. 油莎豆的特征特性及栽培技术[J]. 农村新技术, 2018(6): 8-9. |
CHEN H Z. Characteristics and cultivation techniques of Cyperus esculentus[J]. New Rural Technology, 2018(6): 8-9. (in Chinese) | |
[5] | 王志成, 李双寿, 梁雄, 徐丽君, 邹锡玲. 中国油莎豆产业发展现状与前景展望[J]. 科技和产业, 2022, 22(1): 62-67. |
WANG Z C, LI S S, LIANG X, XU L J, ZOU X L. Development status and prospect of Cyperus esculentus industry in China[J]. Science Technology and Industry, 2022, 22(1): 62-67. (in Chinese) | |
[6] | 王瑞元, 王晓松, 相海. 一种多用途的新兴油料作物——油莎豆[J]. 中国油脂, 2019, 44(1): 1-4. |
WANG R Y, WANG X S, XIANG H. A multi-purpose novel oil crop—Cyperus esculentus[J]. China Oils and Fats, 2019, 44(1): 1-4. (in Chinese) | |
[7] | 焦兵阳, 王英, 尹诗慧, 张金昊, 闫帆, 李景文, 刘雅婧, 王庆钰. 油莎豆生物学特性、功能与遗传研究进展[J]. 现代化农业, 2021(1): 40-44. |
JIAO B Y, WANG Y, YIN S H, ZHANG J H, YAN F, LI J W, LIU Y J, WANG Q Y. Research progress on biological characteristics, function and heredity of Cyperus esculentus[J]. Modernizing Agriculture, 2021(1): 40-44. (in Chinese) | |
[8] |
TAHJIB-UL-ARIF M, ZAHAN M I, KARIM M M, IMRAN S, HUNTER C T, ISLAM M S, MIA M A, HANNAN M A, RHAMAN M S, HOSSAIN M A, BRESTIC M, SKALICKY M, MURATA Y. Citric acid-mediated abiotic stress tolerance in plants[J]. International Journal of Molecular Sciences, 2021, 22(13): 7235-7260.
DOI URL |
[9] |
KRONZUCKER H J, BRITTO D T. Sodium transport in plants: a critical review[J]. The New Phytologist, 2011, 189(1): 54-81.
DOI URL |
[10] |
SMOLKO A, BAUER N, PAVLOVIĆ I, PĚNČÍK A, NOVÁK O, SALOPEK-SONDI B. Altered root growth, auxin metabolism and distribution in Arabidopsis thaliana exposed to salt and osmotic stress[J]. International Journal of Molecular Sciences, 2021, 22(15): 7993-8013.
DOI URL |
[11] |
ZHAO S, ZHANG Q, LIU M, ZHOU H, MA C, WANG P. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9): 4609-4624.
DOI URL |
[12] |
YU Z, DUAN X, LUO L, DAI S, DING Z, XIA G. How plant hormones mediate salt stress responses[J]. Trends in Plant Science, 2020, 25(11): 1117-1130.
DOI PMID |
[13] | 向美琴, 王攀, 蔡兆明. 白菜生长素受体基因家族鉴定及表达分析[J]. 分子植物育种, 2021, 19(16): 5258-5267. |
XIANG M Q, WANG P, CAI Z M. Genome-wide identification and expression pattern analysis of auxin receptor proteins in Brassica rapa[J]. Molecular Plant Breeding, 2021, 19(16): 5258-5267. (in Chinese) | |
[14] |
RUEGGER M, DEWEY E, GRAY W M, HOBBIE L, TURNER J, ESTELLE M. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p[J]. Genes & Development, 1998, 12(2): 198-207.
DOI URL |
[15] |
DHARMASIRI N, DHARMASIRI S, JONES A M, ESTELLE M. Auxin action in a cell-free system[J]. Current Biology, 2003, 13(16): 1418-1422.
PMID |
[16] |
BENJAMINS R, SCHERES B. Auxin: the looping star in plant development[J]. Annual Review of Plant Biology, 2008, 59: 443-465.
DOI PMID |
[17] |
CHEN Z, HU L, HAN N, HU J, YANG Y, XIANG T, ZHANG X, WANG L. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2015, 56(1): 73-83.
DOI URL |
[18] | 代真林, 张荣琴, 杨俊, 张晋豪, 魏兰芳, 刘棋, 姬广海. 大白菜生长素受体基因家族生物信息学鉴定与表达分析[J]. 云南农业大学学报(自然科学), 2020, 35(6): 938-949. |
DAI Z L, ZHANG R Q, YANG J, ZHANG J H, WEI L F, LIU Q, JI G H. Genome-wide identification and expression analysis of the auxin receptor gene family in Chinese cabbage[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(6): 938-949. (in Chinese) | |
[19] | 王波. 拟南芥和盐生植物灰绿藜液泡膜焦磷酸酶基因与TIR1基因表达相关性分析[D]. 乌鲁木齐: 新疆大学, 2007. |
WANG B.Analysis on gene expression correlation between Vacuolar H+-pyrophosphatase and TRANSPORT INHIBITOR RESPONSE1 (TIR1) in Arabidopsis thaliana and halophyte Chenopodium glaucum[D]. Urumqi: Xinjiang University, 2007. (in Chinese) | |
[20] | 高俊凤. 植物生理学实验技术[M]. 西安: 世界图书出版公司, 2000: 196-197. |
GAO J F. Experimental techniques for plant physiology[M]. Xi’an: World Publishing Corporation, 2000: 196-197. (in Chinese) | |
[21] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408.
DOI URL |
[22] |
VAN ZELM E, ZHANG Y, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433.
DOI PMID |
[23] |
LITALIEN A, ZEEB B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. Science of the Total Environment, 2020, 698: 134235.
DOI URL |
[24] | IGLESIAS M J, TERRILE M C, WINDELS D, LOMBARDO M C, BARTOLI C G, VAZQUEZ F, ESTELLE M, CASALONGUÉ C A. MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis[J]. PLoS One, 2014, 9(9): e107678. |
[25] |
PEER W A. From perception to attenuation: auxin signalling and responses[J]. Current Opinion in Plant Biology, 2013, 16(5): 561-568.
DOI PMID |
[26] |
DHARMASIRI N, DHARMASIRI S, ESTELLE M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445.
DOI |
[27] | 邹梦雯, 岳建华, 张荻, 申晓辉. 百子莲生长素受体基因TIR1的全长cDNA克隆及功能分析[J]. 上海交通大学学报(农业科学版), 2015, 33(3): 36-42, 52. |
ZOU M W, YUE J H, ZHANG D, SHEN X H. Cloning and functional analysis of full-length cDNA of the auxin receptor gene TIR1 from Agapanthus praecox ssp. orientalis[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2015, 33(3): 36-42, 52. (in Chinese) | |
[28] | 赖瑞联, 钟春水, 林玉玲, 赖钟雄. 龙眼生长素受体基因TIR1的克隆及表达分析[J]. 热带作物学报, 2016, 37(01): 136-143. |
LAI R L, ZHONG C S, LIN Y L, LAI Z X. Cloning and expression analysis of auxin receptor gene TIR1 from Dimocarpus longan Lour.[J]. Chinese Journal of Tropical Crops, 2016, 37(1): 136-143. (in Chinese) | |
[29] | 曹红利, 岳川, 周艳华, 王璐, 郝心愿, 曾建明, 杨亚军, 王新超. 茶树生长素受体基因CsTIR1的克隆与表达分析[J]. 茶叶科学, 2015, 35(1): 45-54. |
CAO H L, YUE C, ZHOU Y H, WANG L, HAO X Y, ZENG J M, YANG Y J, WANG X C. Cloning and expression analysis of auxin receptor gene CsTIR1 in tea plant (Camellia sinensis)[J]. Journal of Tea Science, 2016, 37(1): 136-143. (in Chinese) | |
[30] | 陈励虹, 周步进, 周瑞阳. 红麻TIR1基因克隆及其表达载体构建[J]. 南方农业学报, 2017, 48(8): 1343-1350. |
CHEN L H, ZHOU B J, ZHOU R Y. Cloning of TIR1 gene in Hibiscus cannabinus L. and construction of its expression vector[J]. Journal of Southern Agriculture, 2017, 48(8): 1343-1350. (in Chinese) | |
[31] |
李婧男, 刘强, 李升. 生长素和氯化钙对盐胁迫下沙冬青幼苗的缓解作用[J]. 植物研究, 2010, 30(1): 27-31.
DOI |
LI J N, LIU Q, LI S. Mitigative effect of IBA and CaCl2 on under salt stress Ammopiptanthus mongolicus seedlings[J]. Bulletin of Botanical Research, 2010, 30(1): 27-31. (in Chinese) | |
[32] | 刘娟, 马小乐, 尚勋武, 王化俊. 外源IAA对小麦‘西旱2号’幼苗水分胁迫和NaCl胁迫的缓解响应[J]. 甘肃农业大学学报, 2009, 44(2): 47-51. |
LIU J, MA X L, SHANG X W, WANG H J. Regulation of exogenous auxin IAA on drought and salt stress during seedling stage of spring wheat (cv. Xihan No.2)[J]. Journal of Gansu Agricultural University, 2009, 44(2): 47-51. (in Chinese) |
[1] | GUO Pan, KONG Hua, WANG Yu, DAI Yunsu, JIA Ruizong, ZHOU Yao, GUO Anping, JI Changmian, MA Chunhua. Identification and Bioinformatics Analysis of Lysine-like Receptor Kinase LysM-RLK Gene Family Based on the Whole Genome of Papaya [J]. Chinese Journal of Tropical Crops, 2023, 44(5): 867-879. |
[2] | SHUI Jun, LIU Xiaoqiang, CHEN Qing, LIANG Xiao, WU Chunling, LIU Ying, YAO Xiaowen, QIAO Yang, MAO Lijie, CHEN Yinhua. Differential Expression Analysis of Jasmonic Acid Pathway Genes Between Resistant and Susceptible Pepper Cultivars Against Myzus persicae Infestation [J]. Chinese Journal of Tropical Crops, 2023, 44(4): 774-784. |
[3] | NONG Qian, XIE Jinlan, LIN Li, MO Zhanghong, WANG Zeping, SONG Xiupeng, LI Changning. Effects of Exogenous ABA on Physiological Characteristics and Gene Expression in Sugarcane Seedlings under Drought Stress [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 553-561. |
[4] | GUO Zihan, TAN Deguan, HUANG Dongyi, FU Lili, SUN Xuepiao, ZHANG Jiaming. Effect of Methyl Jasmonate on Laticifer Cell Differentiation of Hevea brasiliensis Anther Calli [J]. Chinese Journal of Tropical Crops, 2023, 44(2): 310-316. |
[5] | LI Linlin, WANG Chaoqun, LI Chunxia, LUO Kai, WANG Honggang, CHEN Yinhua, ZHANG Xiaofei, GENG Mengting. Cloning of Cassava MeHsfB3a Gene and Identification of Its Resistance to Cassava Bacterial Blight [J]. Chinese Journal of Tropical Crops, 2023, 44(1): 9-16. |
[6] | DUAN Yajie, YANG Baoming, GUO Zhixiang, YIN Kesuo, HU Huigang, ZENG Li, BAI Tingting. Exogenous Salicylic Acid Induced Phenylpropane Metabolism in Banana to Improve the Resistance Against Fusarium Wilt [J]. Chinese Journal of Tropical Crops, 2022, 43(9): 1870-1879. |
[7] | LIN Yongxu, YU Qing, FENG Meichang, LIN Jiaying, ZHAO Mingming, OU Qiuyue, GUO Jinlong, HUANG Guoqiang. Cloning and Expression Analysis of an MYB Transcription Factor Gene ScMYB52-1 from Sugarcane [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1328-1337. |
[8] | ZHANG Weisheng, LIU Zhichao, CAO Hongxing, YAN Yan, CHEN Ping, LI Rui. Cloning and Expression Analysis of DWF5 Genes Involved in the Sterol Synthesis in Oil Palm [J]. Chinese Journal of Tropical Crops, 2022, 43(6): 1095-1101. |
[9] | CHEN Jie, HUANG Shuyi, LI Zhenqin, LIAO Qianxian, SONG Kanghua, HONG Keqian, WANG Junning. Cloning and Expression Analysis of PG Gene in Jackfruit [J]. Chinese Journal of Tropical Crops, 2022, 43(6): 1102-1113. |
[10] | ZENG Liping, WANG Nanqi, LI Xinguo. Effects of Extraneous Salicylic Acid on Physiological Index of Brazil Banana Seedling under NaCl Stress [J]. Chinese Journal of Tropical Crops, 2022, 43(6): 1160-1165. |
[11] | WU Mufeng, LIANG Xiao, CHEN Qing, WU Chunling, LIU Ying, LIU Xiaoqiang, HAN Zhiling. Resistance Mechanism of Cassava Cultivars to Tetranychus urticae Based on Gene Expression Characteristics of Cyanogenic Glycoside Degradation Pathway [J]. Chinese Journal of Tropical Crops, 2022, 43(4): 853-861. |
[12] | WANG Mengdi, LI Rui, CAO Hongxin, JIN Longfei, LI Xinguo. Identification and Expression Analysis of Δ9 Stearoyl-ACP Desaturase Gene in Oil Palm [J]. Chinese Journal of Tropical Crops, 2022, 43(2): 235-243. |
[13] | ZHANG Hongtao, XIAO Xiaohu, YANG Jianghua, QIN Yunxia, LONG Xiangyu, YIN Hongyan, FANG Yongjun. Identification and Expression Analysis of YABBY Gene Family in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(11): 2188-2198. |
[14] | YANG Lin, ZHANG Hangying, YANG Fan, ZHU Zerong, LI Qiumei, ZHANG Juncheng. Molecular Cloning and Expression of Farnesyl Pyrophosphate Synthetase in Cinnamomum camphora [J]. Chinese Journal of Tropical Crops, 2022, 43(10): 1998-2005. |
[15] | ZHOU Yu, CHEN Chuanmin, WANG Jian, ZHOU Mingqiang, YANG Xiaoyu, BNA Xiuwen, LIU Fanzhi, YANG Chenglong. Genome-wide Identification and Expression Analysis of bZIP Gene Family under Abiotic Stress in Coix lacryma-jobi L. [J]. Chinese Journal of Tropical Crops, 2022, 43(10): 2006-2020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||