Chinese Journal of Tropical Crops ›› 2023, Vol. 44 ›› Issue (5): 880-893.DOI: 10.3969/j.issn.1000-2561.2023.05.002
• Omics & Biotechnology • Previous Articles Next Articles
JIA Xinbi, PAN Rao, XIAO Yao, LUO Sha, SHAN Nan, SUN Jingyu, WANG Shenglin, ZHOU Qinghong, HUANG Yingjin, ZHU Qianglong*()
Received:
2022-06-07
Revised:
2022-07-24
Online:
2023-05-25
Published:
2023-06-07
Contact:
*ZHU Qianglong,E-mail:CLC Number:
JIA Xinbi, PAN Rao, XIAO Yao, LUO Sha, SHAN Nan, SUN Jingyu, WANG Shenglin, ZHOU Qinghong, HUANG Yingjin, ZHU Qianglong. Comparative Analysis and Sequencing of Chloroplast Genome of Colocasia esculenta var. Redbud and Colocasia esculenta var. Lipu[J]. Chinese Journal of Tropical Crops, 2023, 44(5): 880-893.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2023.05.002
编号 No. | 样品名称 Sample name | 采集地 Origin | 分类 Species | 编号 No. | 样品名称 Sample name | 采集地 Origin | 分类 Species |
---|---|---|---|---|---|---|---|
1 | 赣芋1号 | 江西赣州 | 多子芋 | 17 | 炮弹芋 | 四川乐山 | 魁芋 |
2 | 青岛芋 | 山东青岛 | 多子芋 | 18 | 黎族多子芋 | 海南白沙黎族自治县 | 多子芋 |
3 | 江芋3号 | 江西上饶 | 多子芋 | 19 | 扁母芋 | 河南商丘 | 多子芋 |
4 | 江芋4号 | 江西上饶 | 多子芋 | 20 | 多子芋 | 天津西青 | 多子芋 |
5 | 瑞金芋 | 江西赣州 | 多子芋 | 21 | 泉州魁芋 | 福建泉州 | 魁芋 |
6 | 于都芋1号 | 江西赣州 | 多子芋 | 22 | 水毛芋 | 重庆 | 多子芋 |
7 | 粉红佳人 | 江西赣州 | 多子芋 | 23 | 紫红嘴芋 | 江西新余 | 多子芋 |
8 | 粉红芋2号 | 江西赣州 | 多子芋 | 24 | 登龙粉芋 | 江西吉安 | 多子芋 |
9 | 于都大野芋 | 江西赣州 | 多子芋 | 25 | 野生紫柄小水芋 | 江西抚州南城县 | 多子芋 |
10 | 紫柄芋 | 江苏宿迁 | 多子芋 | 26 | 花柄食用芋 | 云南丽江 | 多子芋 |
11 | 钦州芋 | 广西钦州 | 多子芋 | 27 | 大麻芋2号 | 云南西双版纳勐腊河边 | 多子芋 |
12 | 紫芽芋 | 江西南昌 | 多子芋 | 28 | 大香芋 | 云南西双版纳勐醒 | 魁芋 |
13 | 狗爪芋 | 云南曲靖 | 多子芋 | 29 | 常德芋 | 湖南常德 | 多子芋 |
14 | 白肉毛芋 | 贵州六盘水 | 多子芋 | 30 | 小香芋 | 云南西双版纳勐醒 | 魁芋 |
15 | 赣州多子芋 | 江西赣州 | 多子芋 | 31 | 鹰潭红芽芋 | 江西鹰潭 | 多子芋 |
16 | 红嘴芋 | 广西南宁 | 多子芋 | 32 | 荔浦芋 | 广西桂林 | 魁芋 |
Tab. 1 Information of 32 germplasm resources of taro
编号 No. | 样品名称 Sample name | 采集地 Origin | 分类 Species | 编号 No. | 样品名称 Sample name | 采集地 Origin | 分类 Species |
---|---|---|---|---|---|---|---|
1 | 赣芋1号 | 江西赣州 | 多子芋 | 17 | 炮弹芋 | 四川乐山 | 魁芋 |
2 | 青岛芋 | 山东青岛 | 多子芋 | 18 | 黎族多子芋 | 海南白沙黎族自治县 | 多子芋 |
3 | 江芋3号 | 江西上饶 | 多子芋 | 19 | 扁母芋 | 河南商丘 | 多子芋 |
4 | 江芋4号 | 江西上饶 | 多子芋 | 20 | 多子芋 | 天津西青 | 多子芋 |
5 | 瑞金芋 | 江西赣州 | 多子芋 | 21 | 泉州魁芋 | 福建泉州 | 魁芋 |
6 | 于都芋1号 | 江西赣州 | 多子芋 | 22 | 水毛芋 | 重庆 | 多子芋 |
7 | 粉红佳人 | 江西赣州 | 多子芋 | 23 | 紫红嘴芋 | 江西新余 | 多子芋 |
8 | 粉红芋2号 | 江西赣州 | 多子芋 | 24 | 登龙粉芋 | 江西吉安 | 多子芋 |
9 | 于都大野芋 | 江西赣州 | 多子芋 | 25 | 野生紫柄小水芋 | 江西抚州南城县 | 多子芋 |
10 | 紫柄芋 | 江苏宿迁 | 多子芋 | 26 | 花柄食用芋 | 云南丽江 | 多子芋 |
11 | 钦州芋 | 广西钦州 | 多子芋 | 27 | 大麻芋2号 | 云南西双版纳勐腊河边 | 多子芋 |
12 | 紫芽芋 | 江西南昌 | 多子芋 | 28 | 大香芋 | 云南西双版纳勐醒 | 魁芋 |
13 | 狗爪芋 | 云南曲靖 | 多子芋 | 29 | 常德芋 | 湖南常德 | 多子芋 |
14 | 白肉毛芋 | 贵州六盘水 | 多子芋 | 30 | 小香芋 | 云南西双版纳勐醒 | 魁芋 |
15 | 赣州多子芋 | 江西赣州 | 多子芋 | 31 | 鹰潭红芽芋 | 江西鹰潭 | 多子芋 |
16 | 红嘴芋 | 广西南宁 | 多子芋 | 32 | 荔浦芋 | 广西桂林 | 魁芋 |
功能Function | 家族名称Family name | 基因代码Gene code | 基因Gene |
---|---|---|---|
自我复制 | 核糖体小亚基 核糖体大亚基 DNA依赖性RNA聚合酶 | rps | rps2,rps3,rps4,rps7a,rps8,rps11,rps12a,rps14,rps15,rps16b,rps18,rps19 |
rpl | rpl2ab,rpl14,rpl16b,rpl20,rpl22,rpl23a,rpl32,rpl33,rpl36 | ||
rpo | rpoA,rpoB,rpoC1b,rpoC2 | ||
rRNA | rrn | rrn4.5Sa,rrn5Sa,rrn16Sa,rrn23Sa | |
tRNA | trn | trnA-UGCab,trnC-GCA,trnD-GUC,trnE-UUC,trnfM-CAU,trnF-GAA,trnG-UCCb,trnG-GCC,trnH,trnI-CAUa,trnI-GAUab,trnK-UUUb,trnL-UAAb,trnL-CAAa,trnL-UAG,trnM,trnN-GUUa,trnP-UGG,trnQ-UUG,trnR-UCU,trnR-ACGa,trnS-GCU,trnS-UGA,trnS-GGA,trnT-GGU,trnT-UGU,trnV-UACb ,trnV-GACa,trnW-CCA,trnY-GUA | |
光合作用 | ATP合酶亚基 | atp | atpA,atpB,atpE,atpFb,atpH,atpI |
光系统I的亚基 | psa | psaA,psaB,psaC,psaI,psaJ | |
光系统II的亚基 | psb | psbA,psbB,psbC,psbD,psbE,psbF,psbI, psbJ,psbK,psbL,psbM,psbN,psbT,psbZ,ycf3c | |
NADH-脱氢酶的亚基 | ndh | ndhAb,ndhBab,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
细胞色素b/f复合物的亚基 | pet | petA,petBb,petDb,petG,petL,petN | |
二磷酸核酮糖氧合酶/羧化酶亚基 | rbc | rbcL | |
其他 | 乙酰-CoA-羧化酶的亚基 | acc | accD |
c型细胞色素合成基因 | ccs | ccsA | |
包膜蛋白基因 | cem | cemA | |
蛋白酶基因 | clp | clpPc | |
成熟酶基因 | mat | matK | |
未知功能 | 保守开放阅读框 | ycf | ycf1,ycf2a,ycf4,ycf68ab |
Tab. 2 Genes found in taro chloroplast genome
功能Function | 家族名称Family name | 基因代码Gene code | 基因Gene |
---|---|---|---|
自我复制 | 核糖体小亚基 核糖体大亚基 DNA依赖性RNA聚合酶 | rps | rps2,rps3,rps4,rps7a,rps8,rps11,rps12a,rps14,rps15,rps16b,rps18,rps19 |
rpl | rpl2ab,rpl14,rpl16b,rpl20,rpl22,rpl23a,rpl32,rpl33,rpl36 | ||
rpo | rpoA,rpoB,rpoC1b,rpoC2 | ||
rRNA | rrn | rrn4.5Sa,rrn5Sa,rrn16Sa,rrn23Sa | |
tRNA | trn | trnA-UGCab,trnC-GCA,trnD-GUC,trnE-UUC,trnfM-CAU,trnF-GAA,trnG-UCCb,trnG-GCC,trnH,trnI-CAUa,trnI-GAUab,trnK-UUUb,trnL-UAAb,trnL-CAAa,trnL-UAG,trnM,trnN-GUUa,trnP-UGG,trnQ-UUG,trnR-UCU,trnR-ACGa,trnS-GCU,trnS-UGA,trnS-GGA,trnT-GGU,trnT-UGU,trnV-UACb ,trnV-GACa,trnW-CCA,trnY-GUA | |
光合作用 | ATP合酶亚基 | atp | atpA,atpB,atpE,atpFb,atpH,atpI |
光系统I的亚基 | psa | psaA,psaB,psaC,psaI,psaJ | |
光系统II的亚基 | psb | psbA,psbB,psbC,psbD,psbE,psbF,psbI, psbJ,psbK,psbL,psbM,psbN,psbT,psbZ,ycf3c | |
NADH-脱氢酶的亚基 | ndh | ndhAb,ndhBab,ndhC,ndhD,ndhE,ndhF,ndhG,ndhH,ndhI,ndhJ,ndhK | |
细胞色素b/f复合物的亚基 | pet | petA,petBb,petDb,petG,petL,petN | |
二磷酸核酮糖氧合酶/羧化酶亚基 | rbc | rbcL | |
其他 | 乙酰-CoA-羧化酶的亚基 | acc | accD |
c型细胞色素合成基因 | ccs | ccsA | |
包膜蛋白基因 | cem | cemA | |
蛋白酶基因 | clp | clpPc | |
成熟酶基因 | mat | matK | |
未知功能 | 保守开放阅读框 | ycf | ycf1,ycf2a,ycf4,ycf68ab |
基因Gene | 外显子I Exon I/bp | 内含子I Intron I/bp | 外显子Ⅱ Exon Ⅱ/bp | 内含子Ⅱ Intron Ⅱ/bp | 内含子Ⅲ Exon Ⅲ/bp |
---|---|---|---|---|---|
trnA-UGC | 38 | 799 | 35 | ||
trnA-UGC | 38 | 799 | 35 | ||
trnG-UCC | 24 | 725 | 48 | ||
trnK-UUU | 37 | 2541 | 42 | ||
trnL-UAA | 37 | 515 | 50 | ||
trnI-GAU | 42 | 942 | 35 | ||
trnI-GAU | 42 | 942 | 35 | ||
trnV-UAC | 38 | 590 | 37 | ||
rps16 | 40 | 988 | 197 | ||
atpF | 145 | 813 | 401 | ||
rpoC1 | 453 | 750 | 1620 | ||
ycf3 | 124 | 738 | 230 | 794 | 153 |
ycf68 | 24 | 31 | 321 | ||
ycf68 | 24 | 31 | 321 | ||
clpP | 71 | 801 | 294 | 640 | 244 |
petB | 6 | 57 | 642 | ||
petD | 8 | 735 | 475 | ||
rpl2 | 388 | 663 | 431 | ||
rpl2 | 388 | 663 | 431 | ||
rpl16 | 9 | 1082 | 399 | ||
ndhA | 553 | 1094 | 539 | ||
ndhB | 775 | 677 | 758 | ||
ndhB | 775 | 677 | 758 |
Tab. 3 Genes with introns in taro chloroplast genome
基因Gene | 外显子I Exon I/bp | 内含子I Intron I/bp | 外显子Ⅱ Exon Ⅱ/bp | 内含子Ⅱ Intron Ⅱ/bp | 内含子Ⅲ Exon Ⅲ/bp |
---|---|---|---|---|---|
trnA-UGC | 38 | 799 | 35 | ||
trnA-UGC | 38 | 799 | 35 | ||
trnG-UCC | 24 | 725 | 48 | ||
trnK-UUU | 37 | 2541 | 42 | ||
trnL-UAA | 37 | 515 | 50 | ||
trnI-GAU | 42 | 942 | 35 | ||
trnI-GAU | 42 | 942 | 35 | ||
trnV-UAC | 38 | 590 | 37 | ||
rps16 | 40 | 988 | 197 | ||
atpF | 145 | 813 | 401 | ||
rpoC1 | 453 | 750 | 1620 | ||
ycf3 | 124 | 738 | 230 | 794 | 153 |
ycf68 | 24 | 31 | 321 | ||
ycf68 | 24 | 31 | 321 | ||
clpP | 71 | 801 | 294 | 640 | 244 |
petB | 6 | 57 | 642 | ||
petD | 8 | 735 | 475 | ||
rpl2 | 388 | 663 | 431 | ||
rpl2 | 388 | 663 | 431 | ||
rpl16 | 9 | 1082 | 399 | ||
ndhA | 553 | 1094 | 539 | ||
ndhB | 775 | 677 | 758 | ||
ndhB | 775 | 677 | 758 |
氨基酸 Amino acid | 密码子 Codon | 数量Number | 氨基酸 Amino acid | 密码子 Codon | 数量Number | ||
---|---|---|---|---|---|---|---|
红芽芋 Redbud | 荔浦芋 Lipu | 红芽芋 Redbud | 荔浦芋 Lipu | ||||
丙氨酸 Ala(A) | GCA | 745 | 743 | 脯氨酸 Pro(P) | CCA | 604 | 608 |
GCC | 366 | 366 | CCC | 375 | 377 | ||
GCG | 267 | 269 | CCG | 251 | 249 | ||
GCT | 1141 | 1139 | CCT | 765 | 770 | ||
半胱氨酸 Cys(C) | TGC | 178 | 176 | 谷氨酰胺 Gln(Q) | CAA | 1309 | 1309 |
TGT | 428 | 430 | CAG | 485 | 484 | ||
天冬氨酸 Asp(D) | GAC | 409 | 407 | 精氨酸 Arg(R) | AGA | 960 | 964 |
GAT | 1632 | 1636 | AGG | 370 | 364 | ||
谷氨酸 Glu(E) | GAA | 1946 | 1948 | CGA | 659 | 657 | |
GAG | 706 | 704 | CGC | 182 | 182 | ||
苯丙氨酸 Phe(F) | TTC | 1058 | 1053 | CGG | 246 | 251 | |
TTT | 1853 | 1865 | CGT | 655 | 655 | ||
甘氨酸 Gly(G) | GGA | 1241 | 1245 | 丝氨酸 Ser(S) | AGC | 244 | 240 |
GGC | 314 | 318 | AGT | 855 | 857 | ||
GGG | 571 | 569 | TCA | 846 | 844 | ||
GGT | 1037 | 1034 | TCC | 667 | 669 | ||
组氨酸 His(H) | CAT | 326 | 326 | TCG | 374 | 376 | |
CAC | 928 | 928 | TCT | 1117 | 1109 | ||
异亮氨酸 Ile(I) | ATA | 1302 | 1300 | 苏氨酸 Thr(T) | ACA | 801 | 803 |
ATC | 780 | 776 | ACC | 452 | 448 | ||
ATT | 2005 | 2009 | ACG | 283 | 283 | ||
赖氨酸 Lys(K) | AAA | 1980 | 1984 | ACT | 977 | 979 | |
AAG | 717 | 715 | 缬氨酸 Val(V) | GTA | 956 | 960 | |
亮氨酸 Leu(L) | CTA | 648 | 648 | GTC | 346 | 344 | |
CTC | 371 | 372 | GTG | 373 | 373 | ||
CTG | 321 | 323 | GTT | 955 | 953 | ||
CTT | 1070 | 1065 | 色氨酸 Trp(W) | TGG | 881 | 881 | |
TTA | 1507 | 1503 | 酪氨酸 Tyr(Y) | TAC | 394 | 394 | |
TTG | 1139 | 1139 | TAT | 1435 | 1433 | ||
甲硫氨酸 Met(M) | ATG | 1099 | 1101 | 终止子 Terminator | TAA | 130 | 130 |
天冬酰胺 Asn(N) | AAC | 572 | 574 | TAG | 126 | 124 | |
AAT | 1805 | 1800 | TGA | 114 | 114 |
Tab. 4 Codon usage in chloroplast genome of Redbud and Lipu
氨基酸 Amino acid | 密码子 Codon | 数量Number | 氨基酸 Amino acid | 密码子 Codon | 数量Number | ||
---|---|---|---|---|---|---|---|
红芽芋 Redbud | 荔浦芋 Lipu | 红芽芋 Redbud | 荔浦芋 Lipu | ||||
丙氨酸 Ala(A) | GCA | 745 | 743 | 脯氨酸 Pro(P) | CCA | 604 | 608 |
GCC | 366 | 366 | CCC | 375 | 377 | ||
GCG | 267 | 269 | CCG | 251 | 249 | ||
GCT | 1141 | 1139 | CCT | 765 | 770 | ||
半胱氨酸 Cys(C) | TGC | 178 | 176 | 谷氨酰胺 Gln(Q) | CAA | 1309 | 1309 |
TGT | 428 | 430 | CAG | 485 | 484 | ||
天冬氨酸 Asp(D) | GAC | 409 | 407 | 精氨酸 Arg(R) | AGA | 960 | 964 |
GAT | 1632 | 1636 | AGG | 370 | 364 | ||
谷氨酸 Glu(E) | GAA | 1946 | 1948 | CGA | 659 | 657 | |
GAG | 706 | 704 | CGC | 182 | 182 | ||
苯丙氨酸 Phe(F) | TTC | 1058 | 1053 | CGG | 246 | 251 | |
TTT | 1853 | 1865 | CGT | 655 | 655 | ||
甘氨酸 Gly(G) | GGA | 1241 | 1245 | 丝氨酸 Ser(S) | AGC | 244 | 240 |
GGC | 314 | 318 | AGT | 855 | 857 | ||
GGG | 571 | 569 | TCA | 846 | 844 | ||
GGT | 1037 | 1034 | TCC | 667 | 669 | ||
组氨酸 His(H) | CAT | 326 | 326 | TCG | 374 | 376 | |
CAC | 928 | 928 | TCT | 1117 | 1109 | ||
异亮氨酸 Ile(I) | ATA | 1302 | 1300 | 苏氨酸 Thr(T) | ACA | 801 | 803 |
ATC | 780 | 776 | ACC | 452 | 448 | ||
ATT | 2005 | 2009 | ACG | 283 | 283 | ||
赖氨酸 Lys(K) | AAA | 1980 | 1984 | ACT | 977 | 979 | |
AAG | 717 | 715 | 缬氨酸 Val(V) | GTA | 956 | 960 | |
亮氨酸 Leu(L) | CTA | 648 | 648 | GTC | 346 | 344 | |
CTC | 371 | 372 | GTG | 373 | 373 | ||
CTG | 321 | 323 | GTT | 955 | 953 | ||
CTT | 1070 | 1065 | 色氨酸 Trp(W) | TGG | 881 | 881 | |
TTA | 1507 | 1503 | 酪氨酸 Tyr(Y) | TAC | 394 | 394 | |
TTG | 1139 | 1139 | TAT | 1435 | 1433 | ||
甲硫氨酸 Met(M) | ATG | 1099 | 1101 | 终止子 Terminator | TAA | 130 | 130 |
天冬酰胺 Asn(N) | AAC | 572 | 574 | TAG | 126 | 124 | |
AAT | 1805 | 1800 | TGA | 114 | 114 |
SSR类型 SSR type | 红芽芋 Redbud | 荔浦芋 Lipu | ||
---|---|---|---|---|
数量 Number | 比例 Ratio/% | 数量 Number | 比例 Ratio/% | |
p1 | 85 | 65.38 | 78 | 62.90 |
p2 | 35 | 26.92 | 35 | 28.23 |
p3 | 8 | 6.15 | 10 | 8.06 |
p4 | 2 | 1.54 | 1 | 0.81 |
总计 | 130 | 100.00 | 124 | 100.00 |
Tab. 5 SSR type in chloroplast genome of Redbud and Lipu
SSR类型 SSR type | 红芽芋 Redbud | 荔浦芋 Lipu | ||
---|---|---|---|---|
数量 Number | 比例 Ratio/% | 数量 Number | 比例 Ratio/% | |
p1 | 85 | 65.38 | 78 | 62.90 |
p2 | 35 | 26.92 | 35 | 28.23 |
p3 | 8 | 6.15 | 10 | 8.06 |
p4 | 2 | 1.54 | 1 | 0.81 |
总计 | 130 | 100.00 | 124 | 100.00 |
重复碱基 Base repeats | 红芽芋 Redbud | 荔浦芋 Lipu | ||
---|---|---|---|---|
数量 Number | 比例 Ratio/% | 数量 Number | 比例 Ratio/% | |
A/T | 82 | 63.08 | 76 | 61.29 |
C/G | 3 | 2.31 | 2 | 1.61 |
TC/AG | 1 | 0.77 | 1 | 0.81 |
AT/TA | 34 | 26.15 | 34 | 27.41 |
AAT/TTA | 5 | 3.85 | 6 | 4.83 |
TAA/ATT | 1 | 0.77 | 1 | 0.81 |
ATA/TAT | 1 | 0.77 | 1 | 0.81 |
TTC/AAG | 1 | 0.77 | 1 | 0.81 |
CAG/GTC | 0 | 0 | 1 | 0.81 |
TATG/ATAC | 1 | 0.77 | 1 | 0.81 |
TATT/ATAA | 1 | 0.77 | 0 | 0 |
总计 | 130 | 100.00 | 124 | 100.00 |
Tab. 6 Base pairs repeats in SSR of Redbud and Lipu
重复碱基 Base repeats | 红芽芋 Redbud | 荔浦芋 Lipu | ||
---|---|---|---|---|
数量 Number | 比例 Ratio/% | 数量 Number | 比例 Ratio/% | |
A/T | 82 | 63.08 | 76 | 61.29 |
C/G | 3 | 2.31 | 2 | 1.61 |
TC/AG | 1 | 0.77 | 1 | 0.81 |
AT/TA | 34 | 26.15 | 34 | 27.41 |
AAT/TTA | 5 | 3.85 | 6 | 4.83 |
TAA/ATT | 1 | 0.77 | 1 | 0.81 |
ATA/TAT | 1 | 0.77 | 1 | 0.81 |
TTC/AAG | 1 | 0.77 | 1 | 0.81 |
CAG/GTC | 0 | 0 | 1 | 0.81 |
TATG/ATAC | 1 | 0.77 | 1 | 0.81 |
TATT/ATAA | 1 | 0.77 | 0 | 0 |
总计 | 130 | 100.00 | 124 | 100.00 |
序号 No. | SSR | 引物名称 Primer name | 序列(5°-3°) Sequence (5°-3°) | |
---|---|---|---|---|
1 | (TA)5...(A)11 | T14-Ce-1 | F:TTTCAAGGACTCCCAAGCAC | R:ATCCGACTAGTTCCGGGTTC |
2 | (TA)9 | T14-Ce-5 | F:GAATTTACAGTCCGTCCCCA | R:CCCTATCGTCTAGCGGTTCA |
3 | (A)11...(AAT)4...(AAT)4 | T14-Ce-6 | F:GACCTTTCCCACTTTCACGA | R:TCCTTTTTCTGTTAGACCAATCA |
4 | (AT)5...(TA)6 | T14-Ce-7 | F:CGCATAAACAAAGCAAAGAAAA | R:CAGAACAAATCATAAAACGTAGCC |
5 | (AT)7...(AT)8 | T14-Ce-10 | F:TCGAGATATTTTATTGGGCGA | R:CAATTCATTGCGCAACTTGT |
6 | (TA)5...(TA)5...(TA)6.. (TA)6...(AT)6 | T14-Ce-13 | F:ATCCGGAGCATACCTTCCTT | R:TGGCTTCTATTGAATCGAGAAA |
7 | (TA)6...(TA)6...(TA)6.. (TA)5...(AT)5 | T14-Ce-15 | F:TGGCTTCTATTGAATCGAGAAA | R:ATCCGGAGCATACCTTCCTT |
8 | (AT)5...(A)12 | T22-Ce-1 | F:TTGATTGGATGGATATGGGTC | R:ACCTATTTCGCCATATCCCC |
9 | (A)11...(A)11 | T22-Ce-3 | F:TCGAGATATTTTATTGGGCGA | R:CAATTCATTGCGCAACTTGT |
10 | (AT)5...(TA)14 | T22-Ce-7 | F:CCTAATAATAACACATGAGAAAAAGGC | R:GGTGCAATTACTATGGCTCG |
11 | (C)10...(T)10 | T22-Ce-10 | F:TGGTTTGGGTCTTTAGCAGG | R:TATTAGACCCACCCATCCCA |
12 | (TA)6...(TA)5...(AT)5 | T22-Ce-16 | F:TGGCTTCTATTGAATCGAGAAA | R:ATCCGGAGCATACCTTCCTT |
Tab. 7 Information of 12 chloroplast SSR primers of taro
序号 No. | SSR | 引物名称 Primer name | 序列(5°-3°) Sequence (5°-3°) | |
---|---|---|---|---|
1 | (TA)5...(A)11 | T14-Ce-1 | F:TTTCAAGGACTCCCAAGCAC | R:ATCCGACTAGTTCCGGGTTC |
2 | (TA)9 | T14-Ce-5 | F:GAATTTACAGTCCGTCCCCA | R:CCCTATCGTCTAGCGGTTCA |
3 | (A)11...(AAT)4...(AAT)4 | T14-Ce-6 | F:GACCTTTCCCACTTTCACGA | R:TCCTTTTTCTGTTAGACCAATCA |
4 | (AT)5...(TA)6 | T14-Ce-7 | F:CGCATAAACAAAGCAAAGAAAA | R:CAGAACAAATCATAAAACGTAGCC |
5 | (AT)7...(AT)8 | T14-Ce-10 | F:TCGAGATATTTTATTGGGCGA | R:CAATTCATTGCGCAACTTGT |
6 | (TA)5...(TA)5...(TA)6.. (TA)6...(AT)6 | T14-Ce-13 | F:ATCCGGAGCATACCTTCCTT | R:TGGCTTCTATTGAATCGAGAAA |
7 | (TA)6...(TA)6...(TA)6.. (TA)5...(AT)5 | T14-Ce-15 | F:TGGCTTCTATTGAATCGAGAAA | R:ATCCGGAGCATACCTTCCTT |
8 | (AT)5...(A)12 | T22-Ce-1 | F:TTGATTGGATGGATATGGGTC | R:ACCTATTTCGCCATATCCCC |
9 | (A)11...(A)11 | T22-Ce-3 | F:TCGAGATATTTTATTGGGCGA | R:CAATTCATTGCGCAACTTGT |
10 | (AT)5...(TA)14 | T22-Ce-7 | F:CCTAATAATAACACATGAGAAAAAGGC | R:GGTGCAATTACTATGGCTCG |
11 | (C)10...(T)10 | T22-Ce-10 | F:TGGTTTGGGTCTTTAGCAGG | R:TATTAGACCCACCCATCCCA |
12 | (TA)6...(TA)5...(AT)5 | T22-Ce-16 | F:TGGCTTCTATTGAATCGAGAAA | R:ATCCGGAGCATACCTTCCTT |
基因 Gene | 错义突变数 Missense varient | 突变密码子 Varient code | 基因 Gene | 错义突变数 Missense varient | 突变密码子 Varient code |
---|---|---|---|---|---|
matK | 1 | A→G | T→C | ||
rpoC2 | 2 | G→A | A→G | ||
T→G | T→C | ||||
rpoC1 | 1 | T→C | ndhF | 2 | C→T |
rbcL | 3 | A→T | C→A | ||
C→G | ndhD | 1 | T→A | ||
G→C | ndhA | 1 | T→C | ||
accD | 1 | C→A | ycf1 | 3 | G→C |
rp120 | 1 | G→A | A→G | ||
rps8 | 1 | C→T | C→T | ||
rp12 | 2 | T→G | psaB | 1 | T→C |
A→C | rp116 | 1 | A→C | ||
ycf2 | 4 | A→G |
Tab. 8 Effect of SNP missense mutation of Redbud and Lipu chloroplast genome on coding gene
基因 Gene | 错义突变数 Missense varient | 突变密码子 Varient code | 基因 Gene | 错义突变数 Missense varient | 突变密码子 Varient code |
---|---|---|---|---|---|
matK | 1 | A→G | T→C | ||
rpoC2 | 2 | G→A | A→G | ||
T→G | T→C | ||||
rpoC1 | 1 | T→C | ndhF | 2 | C→T |
rbcL | 3 | A→T | C→A | ||
C→G | ndhD | 1 | T→A | ||
G→C | ndhA | 1 | T→C | ||
accD | 1 | C→A | ycf1 | 3 | G→C |
rp120 | 1 | G→A | A→G | ||
rps8 | 1 | C→T | C→T | ||
rp12 | 2 | T→G | psaB | 1 | T→C |
A→C | rp116 | 1 | A→C | ||
ycf2 | 4 | A→G |
天南星亚科植物 Aroideae specie | 拉丁名 Latin name | 编号 Code | 全长 Total length/bp | GC含量 GC content/% | 编码蛋白质基因 Protein-coding gene number | 基因总数 Total gene | rRNA | tRNA |
---|---|---|---|---|---|---|---|---|
红芽芋 | Colocasia esculenta | MT447084 | 162 478 | 38.15 | 86 | 131 | 8 | 37 |
荔浦芋 | Colocasia esculenta | MT447085 | 162 453 | 37.99 | 86 | 131 | 8 | 37 |
新西兰芋 | Colocasia esculenta | NC016753.1 | 162 424 | 36.16 | 86 | 131 | 8 | 37 |
花魔芋 | Amorphophallus konjac | MK611803.1 | 161 647 | 36.40 | 86 | 131 | 8 | 37 |
普陀南星 | Arisaema ringens | NC044118.1 | 160 792 | 36.53 | 85 | 131 | 8 | 37 |
短序弯棒芋 | Arisarum simorrhinum | NC056328.1 | 164 961 | 36.51 | 85 | 131 | 8 | 37 |
灰岩芋 | Carlephyton glaucophyllum | NC051871.1 | 168 218 | 35.86 | 85 | 130 | 8 | 36 |
掌叶半夏 | Pinellia pedatisecta | NC058756.1 | 164 682 | 35.71 | 83 | 128 | 8 | 36 |
大薸 | Pistia stratiotes | NC048522.1 | 164 551 | 36.00 | 84 | 129 | 8 | 37 |
独角莲 | Sauromatum giganteum | MN626718.1 | 165 289 | 35.59 | 86 | 132 | 8 | 38 |
皂七 | Steudnera colocasiifolia | MT161479.1 | 162 500 | 36.14 | 84 | 130 | 8 | 37 |
犁头尖 | Typhonium blumei | MT161480.1 | 169 977 | 35.63 | 85 | 131 | 8 | 37 |
黄肉芋 | Xanthosoma helleborifolium | MT161482.1 | 164 418 | 35.84 | 84 | 131 | 8 | 37 |
雪铁芋 | Zamioculcas zamiifolia | MT226775.1 | 167 405 | 35.70 | 84 | 131 | 8 | 37 |
亚马逊匍蟒芋 | Zomicarpella amazonica | NC051874.1 | 162 729 | 35.82 | 84 | 131 | 8 | 37 |
Tab. 9 Comparison of general features of chloroplast genome in fifteen Aroideae species
天南星亚科植物 Aroideae specie | 拉丁名 Latin name | 编号 Code | 全长 Total length/bp | GC含量 GC content/% | 编码蛋白质基因 Protein-coding gene number | 基因总数 Total gene | rRNA | tRNA |
---|---|---|---|---|---|---|---|---|
红芽芋 | Colocasia esculenta | MT447084 | 162 478 | 38.15 | 86 | 131 | 8 | 37 |
荔浦芋 | Colocasia esculenta | MT447085 | 162 453 | 37.99 | 86 | 131 | 8 | 37 |
新西兰芋 | Colocasia esculenta | NC016753.1 | 162 424 | 36.16 | 86 | 131 | 8 | 37 |
花魔芋 | Amorphophallus konjac | MK611803.1 | 161 647 | 36.40 | 86 | 131 | 8 | 37 |
普陀南星 | Arisaema ringens | NC044118.1 | 160 792 | 36.53 | 85 | 131 | 8 | 37 |
短序弯棒芋 | Arisarum simorrhinum | NC056328.1 | 164 961 | 36.51 | 85 | 131 | 8 | 37 |
灰岩芋 | Carlephyton glaucophyllum | NC051871.1 | 168 218 | 35.86 | 85 | 130 | 8 | 36 |
掌叶半夏 | Pinellia pedatisecta | NC058756.1 | 164 682 | 35.71 | 83 | 128 | 8 | 36 |
大薸 | Pistia stratiotes | NC048522.1 | 164 551 | 36.00 | 84 | 129 | 8 | 37 |
独角莲 | Sauromatum giganteum | MN626718.1 | 165 289 | 35.59 | 86 | 132 | 8 | 38 |
皂七 | Steudnera colocasiifolia | MT161479.1 | 162 500 | 36.14 | 84 | 130 | 8 | 37 |
犁头尖 | Typhonium blumei | MT161480.1 | 169 977 | 35.63 | 85 | 131 | 8 | 37 |
黄肉芋 | Xanthosoma helleborifolium | MT161482.1 | 164 418 | 35.84 | 84 | 131 | 8 | 37 |
雪铁芋 | Zamioculcas zamiifolia | MT226775.1 | 167 405 | 35.70 | 84 | 131 | 8 | 37 |
亚马逊匍蟒芋 | Zomicarpella amazonica | NC051874.1 | 162 729 | 35.82 | 84 | 131 | 8 | 37 |
Fig. 6 Position of the midpoint in window sliding window plots of nucleotide diversity (π) across complete chloroplast genome of fifteen Aroideae species Window length: 600 bp; Step size: 200 bp.
[1] |
姜绍通, 程元珍, 郑志, 潘丽军. 红芽芋营养成分分析及评价[J]. 食品科学, 2012, 33(11): 269-272.
DOI |
JIANG S T, CHENG Y Z, ZHENG Z, PAN L J. Analysis and evaluation of nutritional components of red bud taro (Colocasia esulenla L. Schott)[J]. Food Science, 2012, 33(11): 269-272. (in Chinese) | |
[2] | 段文倩, 孙河龙, 金书情, 耿雯雯, 路海涛, 楚子琰, 郭宵飞. 中医绿色药膳房——芋头的药食功效研究[J]. 中西医结合心血管病电子杂志, 2018, 6(21): 26. |
DUAN W Q, SUN H L, JIN S Q, GENG W W, LU H T, CHU Z Y, GUO X F. Study on the medicinal and dietary efficacy of taro, a green medicinal diet room of traditional Chinese medicine[J]. Electronic Journal of Integrated Traditional Chinese and Western Medicine on Cardiovascular Disease, 2018, 6(21): 26. (in Chinese) | |
[3] | 余志平, 林海红, 余俊红, 曾广恒, 洪岳善, 黄新芳. 铅山红芽芋产业发展概况[J]. 长江蔬菜, 2016(20): 34-36. |
YU Z P, LIN H H, YU J H, ZENG G H, HONG Y S, HUANG X F. Development of red bud taro industry in Qianshan[J]. Changjiang Vegetable, 2016(20): 34-36. (in Chinese) | |
[4] | 柯维忠, 徐文慧, 谢妮妮, 吴夏俊鹏, 占学林. 红芽芋低温疗法脱毒苗遗传变异的AFLP检测[J]. 分子植物育种, 2018, 16(14): 4685-4695. |
KE W Z, XU W H, XIE N N, WU-XIA J P, ZHAN X L. AFLP detection of genetic variation of virus-free seedlings of red bud taro treated with hypothermia[J]. Molecular Plant Breeding, 2018, 16(14): 4685-4695. (in Chinese) | |
[5] | 章恒毅. 荔浦芋的引种及其丰产栽培[J]. 中国蔬菜, 2010(15): 45-46. |
ZHANG H Y. Introduction and high yield cultivation of Lipu Taro[J]. Chinese Vegetable, 2010(15): 45-46. (in Chinese) | |
[6] | 张德纯. 中国地理标志产品荔浦芋[J]. 中国蔬菜, 2019(6): 97. |
ZHANG D C. Chinese geographical indication product Lipu Taro[J]. Chinese Vegetable, 2019(6): 97. (in Chinese) | |
[7] | 肖月土. 红芽芋无公害高产栽培技术[J]. 作物杂志, 2006(2): 55-56. |
XIAO Y T. Pollution free and high yield cultivation techniques of red bud taro[J]. Journal of Crops, 2006(2): 55-56. (in Chinese) | |
[8] | 郑建平. 红芽芋的高产栽培技术[J]. 现代园艺, 2010(7): 29-30. |
ZHENG J P. High yield cultivation techniques of red bud taro[J]. Modern Horticulture, 2010(7): 29-30. (in Chinese) | |
[9] | 彭碧云, 张瑀琳. 荔浦县芋头种植的气候条件分析[J]. 安徽农学通报, 2012, 18(12): 178-201. |
PENG B Y, ZHANG Y L. Analysis on climatic conditions of taro planting in Lipu county[J]. Anhui Agronomy Bulletin, 2012, 18(12): 178-201. (in Chinese) | |
[10] | 杨声澉, 宾丽慧, 廖莉莉, 古彪. 桂东南地区荔浦芋高产栽培技术[J]. 长江蔬菜, 2021(20): 29-30. |
YANG S G, BIN L H, LIAO L L, GU B. High yield cultivation techniques of Lipu Taro in Southeast Guangxi[J]. Changjiang Vegetable, 2021(20): 29-30. (in Chinese) | |
[11] |
KAUNDUN S S, MATSUMOTO S. Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze[J]. Journal of the Science of Food and Agriculture, 2011, 91(14): 2660-2663.
DOI URL |
[12] | 张俊焱, 曾阳, 李锦萍, 王虹雨, 张瑞峰, 刘力宽. 2种药用獐牙菜叶绿体基因组密码子偏好性分析[J]. 中国中医药信息杂志, 2022, 29(1): 96-102. |
ZHANG J Y, ZENG Y, LI J P, WANG H Y, ZHANG R F, LIU L K. Analysis of codon usage bias in chloroplast genome of two Medicinal swertia L.[J]. Chinese Journal of Traditional Chinese Medicine Information, 2022, 29(1): 96-102. (in Chinese) | |
[13] |
李金璐, 王硕, 于婧, 王玲, 周世良. 一种改良的植物DNA提取方法[J]. 植物学报, 2013, 48(1): 72-78.
DOI |
LI J L, WANG S, YU J, WANG L, ZHOU S L. An improved plant DNA extraction method[J]. Acta Botany Sinica, 2013, 48(1): 72-78. (in Chinese) | |
[14] |
BANKEVICH A, NURK S, ANTIPOV D, GUREVICH A A, DVORKIN M, KULIKOV A S, LESIN V M, NIKOLENKO S I, PHAM S, PRJIBELSKI A D, PYSHKIN A V, SIROTKIN A V, VYAHHI N, YESLER G, ALEKSEYEV M A, PENZNER P A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5): 455-477.
DOI PMID |
[15] |
TALAMANTES-BECERRA B, CARLING J, GEORGES A. OmicR: a tool to facilitate BLASTn alignments for sequence data[J]. SoftwareX, 2021, 14: 100702.
DOI URL |
[16] |
SHI L C, CHEN H M, JIANG M, WANG L Q, WU X, HUANG L F, LIU C. CPGAVAS2, an integrated plastome sequence annotator and analyzer[J]. Nucleic Acids Research, 2019, 47(W1): W65-W73.
DOI |
[17] |
TILLICH M, LEHWARK P, PELLIZZER T, UIBRICH-JONES E S, FISCHER A, BOCK R, GREINER S. GeSeq-versatile and accurate annotation of organelle genomes[J]. Nucleic Acids Research, 2017, 45(W1): W6-W11.
DOI URL |
[18] |
LOHSE M, DRECHSEL O, BOCK R. OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes[J]. Current Genetics, 2007, 52(5/6): 267-274.
DOI URL |
[19] |
SAHU J, SARMAH R, DEHURY B. Mining for SSRs and FDMs from expressed sequence tags of Camellia sinensis[J]. Bioinformation, 2012, 8(6): 260-266.
DOI URL |
[20] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760.
DOI PMID |
[21] |
MCKENNA A, HANNA M, BANKS E, SIVACHENKO A, CIBULSKIS K, KERNYTSKY A, GARIMELLA K, ALTSHULER D, GABRIEL S, DALY M, DEPRISTO M A. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9): 1297-1303.
DOI PMID |
[22] |
KATOH K, ROZEWICKI J, YAMADA K D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization[J]. Briefings in Bioinformatics, 2019, 20(4): 1160-1166.
DOI PMID |
[23] |
WICKE S, SCHNEEWEISS G M, DEPAMPHILIS C W, MULLER K F, QUAND D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function[J]. Plant Molecular Biology, 2011, 76(3/5): 273-297.
DOI URL |
[24] | 张肖晗, 赵芊, 谢晨星, 靳晓扬, 宋水山. 参与植物天然免疫的LRR型蛋白[J]. 基因组学与应用生物学, 2016, 35(9): 2513-2518. |
ZHANG X H, ZHAO Q, XIE C X, JIN X Y, SONG S S. Involvement of LRR proteins in plant innate immunity[J]. Genomics and Applied Biology, 2016, 35(9): 2513-2518. (in Chinese) | |
[25] | 杨银, 高志勇. 植物抗病机制的研究进展[J]. 科教导刊, 2016(26): 138-139, 186. |
YANG Y, GAO Z Y. Research progress on the mechanism of plant disease resistance[J]. The Guide of Science & Education, 2016(26): 138-139, 186. (in Chinese) | |
[26] | KAWABE A, MIYASHITA N T. Patterns of codon usage bias in three dicot and four monocot plant species[J]. Genes & Genetic Systems, 2003, 78(5): 343-352. |
[27] |
YOU Y N, LIU D C, LIU H B, ZHENG X F, DIAO Y, HUANG X F, HU Z L. Development and characterisation of EST-SSR markers by transcriptome sequencing in taro [Colocasia esculenta (L.) Schoot][J]. Molecular Breeding, 2015, 35(6): 134-145.
DOI URL |
[28] | CHAR H, TRAORE R E, DUVAL M F, RIVALLAN R, MUKHERJEE A, ABOAGYE L M, VAN RENSBURG W J, ANDRIANAVALONA V, PINHEIRO DE CARVALHO M A A, SABORIO F, SRI PRANA M, KOMOLONG B, LAWAC F, LEBOT V. Genetic diversification and dispersal of taro [Colocasia esculenta (L.) Schott][J]. PLoS One, 2016, 11(6): 1-19. |
[29] |
ROUSSEAU-GUEUTIN M, HUANG X, HIGGINSON E, AYLIFFE M, DAY A, TIMMIS J N. Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages[J]. Plant Physiology, 2013, 161(4): 1918-1929.
DOI URL |
[30] |
KODE V, MUDD E A, IAMTHAM S, DAY A. The tobacco plastid accD gene is essential and is required for leaf development[J]. Plant Journal, 2005, 44(2): 237-244.
DOI URL |
[31] | MADOKA Y, TOMIZAWA K, MIZOI J, NISHIDA I, NAGANO Y, SASAKI Y. Chloroplast transformation with modifi ed accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco[J]. Plant & Cell Physiology, 2002, 43(12): 1518-1525. |
[32] |
HERTEL S, ZOSCHKE R, NEUMANN L, QUY, AXMANN I M, SCHMIT-LINNEWEBER C. Multiple checkpoints for the expression of the chloroplast-encoded splicing factor MatK[J]. Plant Physiology, 2013, 163(4): 1686-1698.
DOI PMID |
[33] | SHI H, YANG M, MO C, XIE W, LIU C, WU B, MA X. Complete chloroplast genomes of two Siraitia Merrill species: comparative analysis, positive selection and novel molecular marker development[J]. PLoS One, 2019, 14(12): e0226865. |
[34] | SILVA C, SNAK C, SCHNADEIBACH A S, VAN DEN BERG C, OLIVEIRA R P. Phylogenetic relationships of Echinolaena and Ichnanthus within Panicoideae (Poaceae) reveal two new genera of tropical grasses[J]. Molecular Phylogenetics & Evolution, 2015, 12(93): 212-233. |
[35] |
SEBASTIAN P, SCHAEFER H, TELFORD I R H, RENNER S S. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia[J]. Proceedings of the National Academy of Sciences, 2010, 107(32): 14269-14273.
DOI URL |
[36] | ZHANG M L, WEN Z B, FRITSCH P W, SANDERSON S C. Spatiotemporal evolution of Calophaca (Fabaceae) reveals multiple dispersals in central Asian mountains[J]. PLoS One, 2015, 10(4): e0123228. |
[37] |
CABRERA L I, SALAZAR G A, CHASE M W, MAYO S J, BOGNER J, DVILA P. Phylogenetic relationships of aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA[J]. American Journal of Botany, 2008, 95(9): 1153-1165.
DOI PMID |
[38] |
CUSIMANO N, BOGNER J, MAYO S J, BOYCE P C, WONG S Y, HESSE M, HETTERSCHEID W A, KEATING R C, FRENCH J C. Relationships within the Araceae: comparison of morphological patterns with molecular phylogenies[J]. American Journal of Botany, 2011, 98(4): 654-668.
DOI PMID |
[39] |
NAUHEIMER L, METZLER D, RENNER S S. Global history of the ancient monocot family Araceae inferred with models accounting for past continental positions and previous ranges based on fossils[J]. The New Phytologist, 2012, 195(4): 938-950.
DOI URL |
[1] | WU Shengjin, ZHANG Fangfang, CHEN Xuefeng, LIU Zengliang, ZHANG Wenlong. Identification of the Di-Mon Mating Heterozygote in Lentinula edodes Using a New ISSR Technique [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 476-483. |
[2] | TANG Mei, SUN Fu, HE Cong, LU Hongcong, HUANG Li, XIA Xiuzhong, TANG Zhongping, ZHONG Zhijian, LU Guiyao. Genetic Diversity Analysis of 24 Guangxi Common Aromatic Rice Varieties by Fluorescent SSR Marker Capillary Electrophoresis [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 506-515. |
[3] | ZHENG Zhouyi, LIU Yuting, CHEN Chun, WANG Shasha, TANG Wei. RAD-based Genomic Sequencing Analysis of Jatrohpha curcas L. in Yunnan to Reveal Its Genetic Diversity [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 516-525. |
[4] | GAO Yunfei, LIN Wenqiu, WU Qingsong, ZHANG Xiumei, SUN Weisheng, LIU Shenghui, YAO Yanli. Establishment of PARMS Reaction System for Pineapple (Ananas comosus. L) [J]. Chinese Journal of Tropical Crops, 2023, 44(2): 225-232. |
[5] | WANG Fei, ZHAO Wenzhi, DONG Zhanghong, MA Luyao, LI Weiying, XIA Maotian, WANG Zhengde, XIN Peiyao. Analysis of Chloroplast Genome Characteristics of Prinsepia [J]. Chinese Journal of Tropical Crops, 2022, 43(9): 1759-1770. |
[6] | GONG Yihui, ZHOU Guihua, LI Limei, ZENG Yongxian, CHEN Zhiyin. Assembly and Sequence Analysis of Chloroplast Genome of Amygdalus persica [J]. Chinese Journal of Tropical Crops, 2022, 43(8): 1545-1553. |
[7] | WEI Mingming, HUANG Xiao, LI Weiguo, HUANG Huasun. Using the SSR Fluorescent Labeling to Establish SSR Fingerprints for 37 Cultivars in rubber tree (Hevea brasiliensis) [J]. Chinese Journal of Tropical Crops, 2022, 43(8): 1565-1576. |
[8] | XU Zhijun, LI Yabo, OUYANG Hongjun, XU Lei, AN Dongsheng, LIU Yang. Comprehensive Genetic Diversity Analysis of Eighty Late Upland Rice Landrace [J]. Chinese Journal of Tropical Crops, 2022, 43(5): 930-939. |
[9] | LI Weiying, XIN Jing, ZHAO Wenzhi, DONG Zhanghong, MA Luyao, XIA Maotian, GAO Jie, XIN Peiyao. Genomic Characteristics and Phylogenetic Analysis of Chloroplast of Cordyline fruticosa [J]. Chinese Journal of Tropical Crops, 2022, 43(4): 653-665. |
[10] | YANG Xiangyan, CAI Yuanbao, TAN Qinliang, QIN Xu, HUANG Xianya, WU Mi. Analysis of Codon Usage Bias in the Chloroplast Genome of Ananas comosus [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 439-446. |
[11] | LIU Chao, HAN Lihong, DAI Xiaobo, LIU Chenyu. Characteristics and Phylogenetics of the Complete Chloroplast Genomes of Capsicum Species [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 447-454. |
[12] | WU Jing, LIN Zhenyi, ZHANG Ye, LIU Le, GUO Cong, YE Beilei, LI Weishi, LING Peng. Phenotypic Identification and Genetic Diversity Analysis of Tissue Culture Derived Population of Renanthera philippinensis [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 499-508. |
[13] | JING Minmin, HUANG Bingyu, DAI Xiaohong, LI Dongliang, CHEN Jingjing. Genetic Diversity Analysis of Macadamia Germplasm Resources by SSR Markers [J]. Chinese Journal of Tropical Crops, 2022, 43(2): 262-270. |
[14] | CHEN Yanlu, XIE Ling, LIU Bin, ZENG Fenghua, LIAO Shitong, ZHANG Yan. Community Composition and Diversity of Endophytic Fungi in Banana Root in Guangxi [J]. Chinese Journal of Tropical Crops, 2022, 43(2): 385-398. |
[15] | TIAN Chunyan, BIAN Xin, DONG Lihua, WU Caiwen, LANG Rongbin, YU Huaxian, ZHANG Yu, TAO Lianan, JING Yanfen. Identification and Genetic Analysis of F1 Hybrids from Wild Saccharum spontaneum L. of Sugarcane Using SSR Markers [J]. Chinese Journal of Tropical Crops, 2022, 43(10): 2021-2029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||