Chinese Journal of Tropical Crops ›› 2022, Vol. 43 ›› Issue (12): 2515-2526.DOI: 10.3969/j.issn.1000-2561.2022.12.014
• Plant Protection & Bio-safety • Previous Articles Next Articles
WU Pengpeng1, AN Wei2, XU Yunfeng1, LUO Lijuan1, JIANG Lingyan1,*()
Received:
2022-01-27
Revised:
2022-03-26
Online:
2022-12-25
Published:
2023-01-12
Contact:
JIANG Lingyan
CLC Number:
WU Pengpeng, AN Wei, XU Yunfeng, LUO Lijuan, JIANG Lingyan. Antifungal Activity of 13 Phenylpropanoid Metabolites Against Six Colletotrichum Species[J]. Chinese Journal of Tropical Crops, 2022, 43(12): 2515-2526.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2022.12.014
代谢物 Metabolite | 浓度 Concentration /(μmol·L-1) | 孢子萌发抑制率Inhibition rate of spore germination/% | ||||
---|---|---|---|---|---|---|
柱花草胶孢炭疽 Stylo C. gloeosporioides | 橡胶胶孢炭疽 Rubber C. gloeosporioides | 橡胶尖孢炭疽菌 Rubber C. acutatum | 芒果胶孢炭疽 Mango C. gloeosporioides | 番木瓜胶孢炭疽 Papaya C. gloeosporioides | ||
根皮素 | 1000 | 12.42±1.17ef | 0.91±1.86c | 9.16±2.42f | -7.92±1.75d | 58.49±4.73b |
柚皮素 | 1000 | 13.42±2.93ef | 11.00±2.58d | -3.97±3.95h | 6.77±3.32c | 17.84±3.07e |
香豆素 | 1000 | 16.56±3.89de | 0.88±0.66c | 1.13±0.64gh | 0.25±2.75cd | 50.40±5.17bc |
阿魏酸 | 1000 | 14.57±1.74def | 0.74±4.28c | 16.68±2.87e | -12.86±1.87f | 35.95±5.62cd |
白藜芦醇 | 1000 | 47.50±4.75b | -0.64±2.32c | 22.30±2.40de | -3.05±4.69cde | 22.17±8.78de |
紫檀芪 | 1000 | 100a | 100a | 100a | 100a | 98.67±0.86a |
紫檀芪+根皮素 | 1000+1000 | 100a | 99.50±0.50a | 97.22±1.59ab | 100a | 99.73±0.27a |
紫檀芪+阿魏酸 | 1000+1000 | 100a | 91.89±1.99b | 89.52±2.71c | 100a | 100a |
紫檀芪+香豆素 | 1000+1000 | 100a | 91.53±1.32b | 91.20±1.39bc | 100a | 100a |
根皮素+香豆素 | 1000+1000 | 21.01±2.71cd | 9.59±1.11d | -3.55±2.00h | 2.45±2.26c | 88.50±1.28a |
根皮素+阿魏酸 | 1000+1000 | 24.72±2.41c | 19.61±3.13c | 17.62±2.04de | -8.35±2.54d | 51.17±8.51bc |
香豆素+阿魏酸 | 1000+1000 | 8.72±1.54f | 8.92±1.85d | 5.02±2.49fg | 20.47±4.19b | 51.55±9.91bc |
白藜芦醇+柚皮素 | 1000+1000 | 46.93±2.01b | 7.84±4.03d | 24.35±2.84d | 16.27±3.67b | 43.53±10.36bc |
Tab. 3 Inhibition rate of six metabolites and the pairwise combination on spore germination of five Colletotrichum species
代谢物 Metabolite | 浓度 Concentration /(μmol·L-1) | 孢子萌发抑制率Inhibition rate of spore germination/% | ||||
---|---|---|---|---|---|---|
柱花草胶孢炭疽 Stylo C. gloeosporioides | 橡胶胶孢炭疽 Rubber C. gloeosporioides | 橡胶尖孢炭疽菌 Rubber C. acutatum | 芒果胶孢炭疽 Mango C. gloeosporioides | 番木瓜胶孢炭疽 Papaya C. gloeosporioides | ||
根皮素 | 1000 | 12.42±1.17ef | 0.91±1.86c | 9.16±2.42f | -7.92±1.75d | 58.49±4.73b |
柚皮素 | 1000 | 13.42±2.93ef | 11.00±2.58d | -3.97±3.95h | 6.77±3.32c | 17.84±3.07e |
香豆素 | 1000 | 16.56±3.89de | 0.88±0.66c | 1.13±0.64gh | 0.25±2.75cd | 50.40±5.17bc |
阿魏酸 | 1000 | 14.57±1.74def | 0.74±4.28c | 16.68±2.87e | -12.86±1.87f | 35.95±5.62cd |
白藜芦醇 | 1000 | 47.50±4.75b | -0.64±2.32c | 22.30±2.40de | -3.05±4.69cde | 22.17±8.78de |
紫檀芪 | 1000 | 100a | 100a | 100a | 100a | 98.67±0.86a |
紫檀芪+根皮素 | 1000+1000 | 100a | 99.50±0.50a | 97.22±1.59ab | 100a | 99.73±0.27a |
紫檀芪+阿魏酸 | 1000+1000 | 100a | 91.89±1.99b | 89.52±2.71c | 100a | 100a |
紫檀芪+香豆素 | 1000+1000 | 100a | 91.53±1.32b | 91.20±1.39bc | 100a | 100a |
根皮素+香豆素 | 1000+1000 | 21.01±2.71cd | 9.59±1.11d | -3.55±2.00h | 2.45±2.26c | 88.50±1.28a |
根皮素+阿魏酸 | 1000+1000 | 24.72±2.41c | 19.61±3.13c | 17.62±2.04de | -8.35±2.54d | 51.17±8.51bc |
香豆素+阿魏酸 | 1000+1000 | 8.72±1.54f | 8.92±1.85d | 5.02±2.49fg | 20.47±4.19b | 51.55±9.91bc |
白藜芦醇+柚皮素 | 1000+1000 | 46.93±2.01b | 7.84±4.03d | 24.35±2.84d | 16.27±3.67b | 43.53±10.36bc |
代谢物Metabolite | 菌株Strain | 回归方程Regression equation | 半抑制浓度IC50/(μmol·L-1) | 相关系数R2 |
---|---|---|---|---|
紫檀芪 | 柱花草胶孢炭疽菌 | y=8.531x-22.396 | 422.046 | 0.926 |
橡胶胶孢炭疽菌 | y=4.00x-8.78 | 158.090 | 0.998 | |
橡胶尖孢炭疽菌 | y=5.473x-13.203 | 258.325 | 0.992 | |
芒果胶孢炭疽菌 | y=2.517x-5.345 | 132.884 | 0.993 | |
番木瓜胶孢炭疽菌 | y=3.043x-5.584 | 68.417 | 0.956 | |
紫檀芪+根皮素 | 柱花草胶孢炭疽菌 | y=2.488x-6.140 | 293.475 | 0.960 |
橡胶胶孢炭疽菌 | y=4.108x-9.092 | 163.332 | 0.962 | |
橡胶尖孢炭疽菌 | y=9.073x-22.859 | 330.770 | 0.972 | |
芒果胶孢炭疽菌 | y=8.649x-17.609 | 108.671 | 0.994 | |
番木瓜胶孢炭疽菌 | y=5.703x-11.000 | 84.905 | 0.931 | |
紫檀芪+阿魏酸 | 柱花草胶孢炭疽菌 | y=2.846x-7.828 | 536.712 | 0.952 |
橡胶胶孢炭疽菌 | y=1.357x-2.483 | 67.660 | 0.999 | |
橡胶尖孢炭疽菌 | y=4.947x-11.213 | 184.764 | 0.868 | |
芒果胶孢炭疽菌 | y=2.090x-5.480 | 418.270 | 0.850 | |
番木瓜胶孢炭疽菌 | y=7.014x-16.344 | 213.844 | 0.963 | |
紫檀芪+香豆素 | 柱花草胶孢炭疽菌 | y=5.182x-13.990 | 500.808 | 0.961 |
橡胶胶孢炭疽菌 | y=3.238x-7.081 | 153.755 | 0.945 | |
橡胶尖孢炭疽菌 | y=4.593x-11.767 | 364.661 | 0.975 | |
芒果胶孢炭疽菌 | y=5.499x-12.163 | 162.851 | 0.967 | |
番木瓜胶孢炭疽菌 | y=4.029x-7.808 | 86.662 | 0.953 |
Tab. 4 Toxicity of four treatments on spore germination of five Colletotrichum species
代谢物Metabolite | 菌株Strain | 回归方程Regression equation | 半抑制浓度IC50/(μmol·L-1) | 相关系数R2 |
---|---|---|---|---|
紫檀芪 | 柱花草胶孢炭疽菌 | y=8.531x-22.396 | 422.046 | 0.926 |
橡胶胶孢炭疽菌 | y=4.00x-8.78 | 158.090 | 0.998 | |
橡胶尖孢炭疽菌 | y=5.473x-13.203 | 258.325 | 0.992 | |
芒果胶孢炭疽菌 | y=2.517x-5.345 | 132.884 | 0.993 | |
番木瓜胶孢炭疽菌 | y=3.043x-5.584 | 68.417 | 0.956 | |
紫檀芪+根皮素 | 柱花草胶孢炭疽菌 | y=2.488x-6.140 | 293.475 | 0.960 |
橡胶胶孢炭疽菌 | y=4.108x-9.092 | 163.332 | 0.962 | |
橡胶尖孢炭疽菌 | y=9.073x-22.859 | 330.770 | 0.972 | |
芒果胶孢炭疽菌 | y=8.649x-17.609 | 108.671 | 0.994 | |
番木瓜胶孢炭疽菌 | y=5.703x-11.000 | 84.905 | 0.931 | |
紫檀芪+阿魏酸 | 柱花草胶孢炭疽菌 | y=2.846x-7.828 | 536.712 | 0.952 |
橡胶胶孢炭疽菌 | y=1.357x-2.483 | 67.660 | 0.999 | |
橡胶尖孢炭疽菌 | y=4.947x-11.213 | 184.764 | 0.868 | |
芒果胶孢炭疽菌 | y=2.090x-5.480 | 418.270 | 0.850 | |
番木瓜胶孢炭疽菌 | y=7.014x-16.344 | 213.844 | 0.963 | |
紫檀芪+香豆素 | 柱花草胶孢炭疽菌 | y=5.182x-13.990 | 500.808 | 0.961 |
橡胶胶孢炭疽菌 | y=3.238x-7.081 | 153.755 | 0.945 | |
橡胶尖孢炭疽菌 | y=4.593x-11.767 | 364.661 | 0.975 | |
芒果胶孢炭疽菌 | y=5.499x-12.163 | 162.851 | 0.967 | |
番木瓜胶孢炭疽菌 | y=4.029x-7.808 | 86.662 | 0.953 |
[1] | CANNON P F, DAMM U, JOHNSTON P R, WEIR B S. Colletotrichum-current status and future directions[J]. Studies in Mycology, 2012, 73: 181-213. |
[2] | 李少卡, 赵亚, 王祥和, 胡福初, 陈哲, 范鸿雁. 海南荔枝炭疽病病原菌鉴定及遗传多样性分析[J]. 农业生物技术学报, 2021, 29(4): 673-687. |
LI S K, ZHAO Y, WANG X H, HU F C, CHEN Z, FAN H Y. Identification and genetic diversity analysis of Litchi chinensis Colletotrichum spp. in Hainan[J]. Journal of Agricultural Biotechnology, 2021, 29(4): 673-687. (in Chinese) | |
[3] | 李其利, 卜俊燕, 唐利华, 黄穗萍, 郭堂勋, 莫贱友. 芒果炭疽菌研究进展[J]. 微生物学杂志, 2020, 40(1): 117-124. |
LI Q L, BU J Y, TANG L H, HUANG S P, GUO T X, MO J Y. Advances in mango anthracnose (Colletotrichum gloeosporioides)[J]. Journal of Microbiology, 2020, 40(1): 117-124. (in Chinese) | |
[4] | 蔡志英, 李加智, 王进强, 张春霞, 何明霞, 贺丽琼. 橡胶胶孢炭疽菌和尖孢炭疽菌对杀菌剂的敏感性测定[J]. 云南农业大学学报, 2008, 23(6): 787-790. |
CAI Z Y, LI J Z, WANG J Q, ZHANG C X, HE M X, HE L Q. Sensitivity test of Colletotrichum gloeosporioides and Colletotrichum acutatum isolated from rubber to the fungicides[J]. Journal of Yunnan Agricultural University, 2008, 23(6): 787-790. (in Chinese) | |
[5] | 易克贤. 柱花草炭疽病及其抗病育种进展[J]. 中国草地, 2001, 23(4): 59-65. |
YI K X. Stylo anthracnose and current research progresses on anthracnose resistance breeding[J]. Grassland China, 2001, 23(4): 59-65. (in Chinese) | |
[6] | DEAN R, KAN J, PRETORIUS Z A, HAMMOND- KOSACK K E, PIETRO A D, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(7): 804. |
[7] | 刘丽萍, 高洁, 李玉. 植物炭疽菌属Colletotrichum真菌研究进展[J]. 菌物研究, 2020, 18(4): 266-281. |
LIU L P, GAO J, LI Y. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. Journal of Fungal Research, 2020, 18(4): 266-281. (in Chinese) | |
[8] | 李河, 李司政, 王悦辰, 刘君昂, 徐建平, 周国英. 油茶苗圃炭疽病原菌鉴定及抗药性[J]. 林业科学, 2019, 55(5): 85-94. |
LI H, LI S Z, WANG Y C, LIU J A, XU J P, ZHOU G Y. Identification of the pathogens causing anthracnose of Camellia oleifera in nursery and their resistence to fungicides[J]. Scienta Silve Sinicae, 2019, 55(5): 85-94. (in Chinese) | |
[9] | 张正炜, 郗厚诚, 常文程, 黄璐璐, 陈秀. 我国植物源农药商品化应用现状及产业发展建议[J]. 世界农药, 2020, 42(12): 6-15. |
ZHANG Z W, XI H C, CHANG W C, HUANG L L, CHEN X. Current situation of commercialized application of plant-derived pesticides in China and suggestions for industrial development[J]. World Pesticides, 2020, 42(12): 6-15. (in Chinese) | |
[10] | 王忠兴, 魏芸娜, 顾沛雯. 几种植物源和微生物源药剂对葡萄灰霉菌的毒力测定及田间防效[J]. 北方园艺, 2019(15): 55-60. |
WANG Z X, WEI Y N, GU P W. The toxicity and control effect of several botanical and biological's pesticides against Botrytis cinerea[J]. Northern Horticulture, 2019(15): 55-60. (in Chinese) | |
[11] | 石洁, 李宝燕, 栾炳辉, 李凌云, 田园园, 王英姿. 5种生物药剂对葡萄炭疽病药效研究[J]. 中国果树, 2021(1): 74-76. |
SHI J, LI B Y, LUAN B H, LI L Y, TIAN Y Y, WANG Y Z. Study on the control effect of five biological fungicides on grape anthracnose[J]. China Fruits, 2021(1): 74-76. (in Chinese) | |
[12] | DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. |
[13] |
NAOUMKINA M A, ZHAO Q, GALLEGO‐GIRALDO L, DAI X, ZHAO P X, DIXON R A. Genome-wide analysis of phenylpropanoid defence pathways[J]. Molecular Plant Pathology, 2010, 11(6): 829-846.
DOI PMID |
[14] | BEYER S F, BEESLEY A, ROHMANN P F W, SCHULTHEISS H, LANGENBACH C. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust[J]. The Plant Journal, 2019, 99(3): 397-413. |
[15] | LIU X, CUI X, JI D, ZHANG Z, TIAN S. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry[J]. Food Chemistry, 2021, 342: 128309. |
[16] | ZHANG M Y, WANG D J, GAO X X, YUE Z Y, ZHOU H L. Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples[J]. Scientia Horticulturae, 2020, 268: 109348. |
[17] | YANG L, WANG Y, HE X B, XIAO QL, HAN ST, JIA Z, LI S L, DING W. Discovery of a novel plant-derived agent against Ralstonia solanacearum by targeting the bacterial division protein FtsZ[J]. Pesticide Biochemistry and Physiology, 2021, 177: 104892. |
[18] | YANG L, WEI Z L, LI S L, XIAO R, XU Q Q, RAN Y, DING W. Plant secondary metabolite, daphnetin reduces extracellular polysaccharides production and virulence factors of Ralstonia solanacearum[J]. Pesticide Biochemistry and Physiology, 2021, 179: 104948. |
[19] | ROY S, NUCKLES E, ARCHBOLD D D. Effects of phenolic compounds on growth of Colletotrichum spp[J]. Current Microbiology, 2018, 75(5): 550-556. |
[20] | JIANG L Y, WU P P, YANG L Y, LIU C, GUO P F, WANG H, WANG S C, XU F P, ZHUANG Q W, TONG X Z, LIU P D, LUO L J. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides[J]. Genomics, 2021, 113(4): 2702-2716. |
[21] | 陈年春. 农药生物测定技术农药植保专业用[M]. 北京: 北京农业大学出版社, 1991. |
CHEN N C. Pesticide bioassay technology for pesticide plant protection specialty[M]. Beijing: Beijing Agricultural University Press, 1991. (in Chinese) | |
[22] | 方中达. 植病研究方法[M]. 3版. 北京: 中国农业出版社, 1998. |
FANG Z D. Research methods of plant diseases[M]. 3rd edition. Beijing: China Agriculture Press, 1998. (in Chinese) | |
[23] | TALBOT N J, EBBOLE D J, HAMER J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea[J]. Plant Cell, 1993, 5(11): 1575-1590. |
[24] | 周子骞, 李敏, 高兆银, 王义, 洪小雨, 李春霞, 胡美姣. 海南番木瓜炭疽病病原菌鉴定及其防治药剂筛选[J]. 西南农业学报, 2020, 33(1): 70-76. |
ZHOU Z Q, LI M, GAO Z Y, WANG Y, HONG X Y, LI C X, HU M J. Pathogens identification and fungicide screening of papaya fruit anthrocnose in Hainan[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(1): 70-76. (in Chinese) | |
[25] | 曹学仁, 车海彦, 杨毅, 罗大全. 2014年海南省橡胶炭疽病菌对多菌灵和咪鲜胺的敏感性测定[J]. 植物病理学报, 2015, 45(6): 626-631. |
CAO X R, CHE H Y, YANG Y, LUO D Q. Sensitivity of Colletotrichum spp. from Hevea brasiliensis to carbendazim and prochloraz in Hainan province in China in 2014[J]. Acta Phytopathologica Sinica, 2015, 45(6): 626-631. (in Chinese) | |
[26] | 王万东, 刘光华, 尼章光, 罗心平, 俞艳春. 芒果炭疽病的发生规律及综合防治[J]. 广东农业科学, 2008, 35(6): 67-69. |
WANG W D, LIU G H, NI Z G, LUO X P, YU Y C. Pathogenesis and comprehensive treatments of mango anthracnose[J]. Guangdong Agricultural Sciences, 2008, 35(6): 67-69. (in Chinese) | |
[27] | 王雅君, 邵远志, 何文琪, 尤文静, 葛春晖, 李雯. 采后番木瓜果实炭疽病病原菌分离鉴定及其拮抗菌的筛选[J]. 食品工业科技, 2020, 41(6): 111-118, 130. |
WANG Y J, SHAO Y Z, HE W Q, YOU W J, GE C H, LI W. Isolation and identification of anthracnose pathogen in postharvest papaya fruits and screening of the antagonistic bacteria[J]. Science and Technology of Food Industry, 2020, 41(6): 111-118, 130. (in Chinese) | |
[28] | WINCH J E, NEWHOOK F J, JACKSON G V H, COLE J S. Studies of Colletotrichum gloeosporioides disease on yam, Dioscorea alata, in Solomon Islands[J]. Plant Pathology, 1984, 33(4): 467-477. |
[29] | 张俊有, 蒋家珍. 采用半果接种法研究几种杀菌剂对芒果炭疽病的防治效果[J]. 江苏农业科学, 2020, 48(24): 102-107. |
ZHANG J Y, JIANG J Z. Study on control efficacy of several fungicides on mango anthracnose by semi-fruit inoculation method[J]. Jiangsu Agricultural Sciences, 2020, 48(24): 102-107. (in Chinese) | |
[30] | 林春花, 徐轩, 戈玉琪, 牟保辉, 刘文波, 缪卫国, 郑服丛. 中国2种橡胶树炭疽病菌对咪鲜胺敏感性比较[J]. 热带作物学报, 2017, 38(1): 111-115. |
LIN C H, XU X, GE Y Q, MOU B H, LIU W B, MIAO W G, ZHENG F C. Comparison of sensitivity between two Colletotrichum species from Hevea brasiliensis to prochloraz in China[J]. Chinese Journal of Tropical Crops, 2017, 38(1): 111-115. (in Chinese) | |
[31] |
LYGIN A V, HILL C B, PAWLOWSKI M, ZERNOVA O V, WIDHOLM J M, HARTMAN G, LOZOVAYA V V. Inhibitory effects of stilbenes on the growth of three soybean pathogens in culture[J]. Phytopathology, 2014, 104(8): 843-850.
DOI PMID |
[32] | XU D, DENG Y, XI P, ZHU Z, KONG X, WAN L, SITU J, LI M, GAO L, JIANG Z. Biological activity of pterostilbene against Peronophythora litchii, the litchi downy blight pathogen[J]. Postharvest Biology and Technology, 2018, 144: 29-35. |
[33] | 黄小兰, 盖智星, 王日葵, 贺明阳, 韩冷, 周炼. 对羟基苯甲酸处理对采后柑橘炭疽病的抑制及机理研究[J]. 食品与机械, 2016, 32(9): 121-125, 208. |
HUANG X L, GAI Z X, WANG R K, HE M Y, HAN L, ZHOU L. Mechanism and inhibitory effect of p-hydrxybenzoic acid on anthracnose in postharvest citrus[J]. Food and Machinery, 2016, 32(9): 121-125, 208. (in Chinese) | |
[34] | 杨婷, 史红安, 李聪丽, 李建华, 王立华, 李国元, 张志林. 13种萜类化合物对胶孢炭疽菌和链格孢的抑制活性[J]. 植物保护, 2017, 43(2): 192-195. |
YANG T, SHI H A, LI C L, LI J H, WANG L H, LI G Y, ZHANG Z L. Antifungal activity of 13 terpenoid compounds against Colletotrichum gloeosporioides and Alternaria sp[J]. Plant Protection, 2017, 43(2): 192-195. (in Chinese) | |
[35] | 周丹丹, 王卓, 邢梦珂, 屠康, 周程雁. 植物精油抑制炭疽菌及对枇杷采后炭疽病与品质的影响[J]. 食品科学, 2017, 38(19): 212-217. |
ZHOU D D, WANG Z, XING M K, TU K, ZHOU C Y. Inhibitory effect of plant essential oils on colletorichum acutatum and postharvest anthracnose and quality of loquat fruits[J]. Food Science, 2017, 38(19): 212-217. (in Chinese) | |
[36] | 王娅宁, 尉亚辉, 郝浩永, 姬婧媛. 白藜芦醇代谢物的研究进展[J]. 西北植物学报, 2007, 27(4): 4852-4857. |
WANG Y N, WEI Y H, HAO H Y, JI J Y. Advances in the research of resveratrol metabolins[J]. Acta Botanica Boreali-occidentalia Sinica, 2007, 27(4): 4852-4857. (in Chinese) | |
[37] |
KOLOUCHOVÁ I, MAŤÁTKOVÁ O, PALDRYCHOVÁ M, KODEŠ Z, KVASNIČKOVÁ E, SIGLER K, ČEJKOVÁ A, ŠMIDRKAL J, DEMNEROVÁ K, MASÁK J. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents[J]. Folia Microbiologica, 2018, 63(3): 261-272.
DOI PMID |
[38] | PEZET R, PONT V. Ultrastructural observations of pterostilbene fungitoxicity in dormant conidia of Botrytis cinerea pers[J]. Journal of Phytopathology, 1990, 129(1): 19-30. |
[1] | LI Lanlan, DAI Liming, JIANG Guizhi, LIU Yixian, SHI Yuping, CAI Zhiying. Isolation, Identification and Bacteriostasis Study of Endophytic Bacteria to Control Colletotrichum Leaf Disease on Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2958-2965. |
[2] | HUANG Junjun, MA Xiang, TANG Hongqian, LIU Zhu, TANG Yanqiong. Screening and Identification of Artificial Pepaptamers for Inhibition of Fusarium oxysporum f.sp.cubense FOC4 [J]. Chinese Journal of Tropical Crops, 2018, 39(5): 974-978. |
[3] | TAO Lin, CONG Ziwen, ZHOU Shuangqing, HUANG Dongyi, WU Wenqiang, XU Yun, XIA Wei, ZHANG Rongping, HUANG Xiaolong. Antifungal Active Component of Marine Streptomyces fradiae HNM0089 [J]. Chinese Journal of Tropical Crops, 2018, 39(4): 753-757. |
[4] | ZHANG Jiyou JING Xiaohui WU Lunying LIU Guodao. Prokaryotic Expression and Antifungal Activity of Watermelon ClPDF2.1 Against Fusariumoxysporum f. sp. cubense 4 [J]. Chinese Journal of Tropical Crops, 2015, 36(6): 1161-1165. |
[5] | JING Xiaohui WU Lunying SHEN Yan ZHAO Hui WU Lin. The Purification of GST-MtDef4 Fusion Protein and Detection of Its Antifungal Activity in vitro [J]. Chinese Journal of Tropical Crops, 2014, 35(4): 718-723. |
[6] | ZHAN Wei ZHANG Xin LV Yanchao ZHANG He WANG Fang QIU Xiaocong. Antibacterial Activity of Three Kinds of Molecular Weight Chitosan on Fusarium oxysporum f.sp.cubense [J]. Chinese Journal of Tropical Crops, 2012, 33(1): 132-136. |
[7] | Wu Liyu Wu Zhangxing Qin Lijian . Biological Activities of Peel Extract of Mango(Mangifera indica L.) and Its Chemical Constituents [J]. Chinese Journal of Tropical Crops, 2008, 29(1): 117-120. |
[8] | Luo Yanping Zheng Fucong Yang Ye. Antifungal Activities of 128 Southern Chinese Herbs against 6 Pathogens [J]. Chinese Journal of Tropical Crops, 2004, 25(4): 106-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||