Chinese Journal of Tropical Crops ›› 2022, Vol. 43 ›› Issue (12): 2431-2442.DOI: 10.3969/j.issn.1000-2561.2022.12.005
• Omics & Biotechnology • Previous Articles Next Articles
LUO Xuan1, LIN Zhengyu1, CHEN Zhang1, LEI Bo1, LI Jie1, QUAN Jinying1, LIU Hailan2,*()
Received:
2022-04-24
Revised:
2022-05-23
Online:
2022-12-25
Published:
2023-01-12
Contact:
LIU Hailan
CLC Number:
LUO Xuan, LIN Zhengyu, CHEN Zhang, LEI Bo, LI Jie, QUAN Jinying, LIU Hailan. Identification and Evolutionary Analysis of Maize DUF1685 Gene Family[J]. Chinese Journal of Tropical Crops, 2022, 43(12): 2431-2442.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2022.12.005
类别 Categary | 植物名称 Plant name | 基因数量 Nmuber of gene |
---|---|---|
石松植物门 | 卷柏Selaginella moellendorffii | 5 |
双子叶植物 | 拟南芥Arabidopsis thaliana | 9 |
甘蓝Brassica oleracea | 12 | |
甘蓝型油菜Brassica napus | 34 | |
白菜Brassica rapa | 16 | |
萝卜Raphanus sativus | 15 | |
芥菜型油菜Brassica juncea | 33 | |
黑芥Brassica nigra | 16 | |
棉花Gossypium raimondii | 15 | |
大豆Glycine max | 10 | |
苜蓿Medicago truncatula | 6 | |
单子叶植物 | 大麦Hordeum vulgare | 5 |
水稻Oryza sativa | 5 | |
玉米Zea mays | 7 | |
高粱Sorghum bicolor | 6 | |
菠萝Ananas comosus | 6 | |
柳枝稷Panicum virgatum | 11 |
Tab. 1 Distribution of DUF1685 gene family in plants
类别 Categary | 植物名称 Plant name | 基因数量 Nmuber of gene |
---|---|---|
石松植物门 | 卷柏Selaginella moellendorffii | 5 |
双子叶植物 | 拟南芥Arabidopsis thaliana | 9 |
甘蓝Brassica oleracea | 12 | |
甘蓝型油菜Brassica napus | 34 | |
白菜Brassica rapa | 16 | |
萝卜Raphanus sativus | 15 | |
芥菜型油菜Brassica juncea | 33 | |
黑芥Brassica nigra | 16 | |
棉花Gossypium raimondii | 15 | |
大豆Glycine max | 10 | |
苜蓿Medicago truncatula | 6 | |
单子叶植物 | 大麦Hordeum vulgare | 5 |
水稻Oryza sativa | 5 | |
玉米Zea mays | 7 | |
高粱Sorghum bicolor | 6 | |
菠萝Ananas comosus | 6 | |
柳枝稷Panicum virgatum | 11 |
Fig. 2 Phylogenetic tree (A), conserved motif (B) and gene structure (C) analysis of DUF1685 gene Class I subfamily B: Different colors represent different conserved motifs; C: The blue squares represent noncoding regions, the red squares represent CDS, and the gray lines represent introns.
Fig. 3 Phylogenetic tree (A), conserved motif (B) and gene structure (C) analysis of DUF1685 gene Class II subfamily B: Different colors represent different conserved motifs; C: The blue squares represent noncoding regions, the red squares represent CDS, and the gray lines represent introns.
Fig. 4 Phylogenetic tree (A), conserved motif (B) and gene structure (C) analysis of DUF1685 gene Class III subfamily B: Different colors represent different conserved motifs; C: The blue squares represent noncoding regions, the red squares represent CDS, and the gray lines represent introns.
亚家族 Subfamily | 模型Model | dN/dS(ω) | 参数估计 Estimates of parameters | 正选择位点 Positively selected sites | 似然比检验(P值) Likelihood ratio test (P value) |
---|---|---|---|---|---|
Class I (A1) | M0 | 0.2804 | ω=0.280 40 | None | 2Δlnl (M0 vs M3)=758.85 (P<0.001) 2Δlnl (M1 vs M2)=10.87 (P<0.001) 2Δlnl (M7 vs M8)=19.41 (P<0.001) |
M1 | 0.6037 | p0=0.423 38 (p1=0.576 62) | Not allowed | ||
M2 | 0.7078 | p0=0.416 87, p1=0.489 10 (p2 = 0.094 02), ω2=2.028 98 | 129L | ||
M3 | 0.4993 | p0=0.372 92, p1=0.282 68 (p2=0.344 40) ω0=0.040 26, ω1=0.368 83, ω2=1.057 94 | Many | ||
M7 | 0.4327 | p=0.474 68, q=0.622 25 | Not allowed | ||
M8 | 0.4830 | p0=0.773 06 (p1=0.226 94) p=0.580 33, q=1.545 51, ω=1.205 03 | 129L | ||
Class I (A2) | M0 | 0.2161 | ω=0.216 10 | None | 2Δlnl (M0 vs M3)=356.15 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=18.76 (P<0.001) |
M1 | 0.5260 | p0=0.540 94 (p1= 0.459 06) | Not allowed | ||
M2 | 0.5260 | p0=0.540 94, p1=0.221 75 (p2=0.237 31), ω2=1.000 00 | 320 327 | ||
M3 | 0.3339 | p0=0.194 86, p1=0.409 50 (p2=0.395 64) ω0=0.013 19, ω1=0.181 15, ω2=0.650 04 | — | ||
M7 | 0.3430 | p=0.569 65, q=1.086 47 | Not allowed | ||
M8 | 0.9463 | p0=0.911 31(p1=0.088 69) p=0.644 37, q=1.553 61, ω=7.676 29 | 320 327 | ||
Class II (B1) | M0 | 0.2046 | ω=0.204 60 | None | 2Δlnl (M0 vs M3)=309.57 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=15.26 (P<0.001) |
M1 | 0.4187 | p0=0.653 79 (p1=0.346 21) | Not allowed | ||
M2 | 0.4187 | p0=0.653 79, p1=0.284 11 (p2=0.062 09), ω2=1.000 00 | — | ||
M3 | 0.3332 | p0=0.387 17, p1=0.466 77 (p2=0.146 07) ω0=0.038 18, ω1=0.299 61, ω2=1.222 36 | Many | ||
M7 | 0.2915 | p=0.551 73, q=1.331 02 | Not allowed | ||
M8 | 3.6758 | p0=0.969 96 (p1=0.030 04) p=0.599 66, q=1.598 75, ω=113.620 63 | 338P | ||
Class II (B2) | M0 | 0.1827 | ω=0.182 70 | None | 2Δlnl (M0 vs M3)=298.50 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=0.00 (P=1.000) |
M1 | 0.3588 | p0=0.732 14 (p1=0.267 86) | Not allowed | ||
M2 | 0.3588 | p0=0.732 14, p1=0.0768 90 (p2=0.190 97), ω2=1.000 00 | — | ||
M3 | 0.2149 | p0=0.325 22, p1=0.374 94 (p2=0.299 84)ω0=0.009 03, ω1=0.174 85, ω2=0.488 29 | — | ||
M7 | 0.2167 | p=0.509 79, q=1.814 23 | Not allowed | ||
M8 | 0.2167 | p0=0.999 99 (p1=0.000 01) p=0.509 81, q=1.814 41, ω=1.216 11 | — | ||
Class III | M0 | 0.2882 | ω=0.288 2 | None | 2Δlnl (M0 vs M3)=607.62 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=204.29 (P<0.001) |
M1 | 0.5642 | p0=0.526 87 (p1=0.473 13) | Not allowed | ||
M2 | 0.5642 | p0=0.526 87, p1=0.071 42 (p2=0.401 70), ω2=1.000 00 | — | ||
M3 | 9.5791 | p0=0.307 06, p1=0.473 78 (p2=0.219 16) ω0=0.111 37, ω1=0.111 37, ω2=42.538 39 | Many | ||
M7 | 0.4731 | p=0.778 83, q=0.866 74 | Not allowed | ||
M8 | 9.3514 | p0=0.785 28 (p1=0.214 72) p=1.066 73, q=1.901 71, ω= 42.241 90 | 141 Sites |
Tab. 2 DUF1685 gene family dN/dS estimation and likelihood ratio test under Site model
亚家族 Subfamily | 模型Model | dN/dS(ω) | 参数估计 Estimates of parameters | 正选择位点 Positively selected sites | 似然比检验(P值) Likelihood ratio test (P value) |
---|---|---|---|---|---|
Class I (A1) | M0 | 0.2804 | ω=0.280 40 | None | 2Δlnl (M0 vs M3)=758.85 (P<0.001) 2Δlnl (M1 vs M2)=10.87 (P<0.001) 2Δlnl (M7 vs M8)=19.41 (P<0.001) |
M1 | 0.6037 | p0=0.423 38 (p1=0.576 62) | Not allowed | ||
M2 | 0.7078 | p0=0.416 87, p1=0.489 10 (p2 = 0.094 02), ω2=2.028 98 | 129L | ||
M3 | 0.4993 | p0=0.372 92, p1=0.282 68 (p2=0.344 40) ω0=0.040 26, ω1=0.368 83, ω2=1.057 94 | Many | ||
M7 | 0.4327 | p=0.474 68, q=0.622 25 | Not allowed | ||
M8 | 0.4830 | p0=0.773 06 (p1=0.226 94) p=0.580 33, q=1.545 51, ω=1.205 03 | 129L | ||
Class I (A2) | M0 | 0.2161 | ω=0.216 10 | None | 2Δlnl (M0 vs M3)=356.15 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=18.76 (P<0.001) |
M1 | 0.5260 | p0=0.540 94 (p1= 0.459 06) | Not allowed | ||
M2 | 0.5260 | p0=0.540 94, p1=0.221 75 (p2=0.237 31), ω2=1.000 00 | 320 327 | ||
M3 | 0.3339 | p0=0.194 86, p1=0.409 50 (p2=0.395 64) ω0=0.013 19, ω1=0.181 15, ω2=0.650 04 | — | ||
M7 | 0.3430 | p=0.569 65, q=1.086 47 | Not allowed | ||
M8 | 0.9463 | p0=0.911 31(p1=0.088 69) p=0.644 37, q=1.553 61, ω=7.676 29 | 320 327 | ||
Class II (B1) | M0 | 0.2046 | ω=0.204 60 | None | 2Δlnl (M0 vs M3)=309.57 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=15.26 (P<0.001) |
M1 | 0.4187 | p0=0.653 79 (p1=0.346 21) | Not allowed | ||
M2 | 0.4187 | p0=0.653 79, p1=0.284 11 (p2=0.062 09), ω2=1.000 00 | — | ||
M3 | 0.3332 | p0=0.387 17, p1=0.466 77 (p2=0.146 07) ω0=0.038 18, ω1=0.299 61, ω2=1.222 36 | Many | ||
M7 | 0.2915 | p=0.551 73, q=1.331 02 | Not allowed | ||
M8 | 3.6758 | p0=0.969 96 (p1=0.030 04) p=0.599 66, q=1.598 75, ω=113.620 63 | 338P | ||
Class II (B2) | M0 | 0.1827 | ω=0.182 70 | None | 2Δlnl (M0 vs M3)=298.50 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=0.00 (P=1.000) |
M1 | 0.3588 | p0=0.732 14 (p1=0.267 86) | Not allowed | ||
M2 | 0.3588 | p0=0.732 14, p1=0.0768 90 (p2=0.190 97), ω2=1.000 00 | — | ||
M3 | 0.2149 | p0=0.325 22, p1=0.374 94 (p2=0.299 84)ω0=0.009 03, ω1=0.174 85, ω2=0.488 29 | — | ||
M7 | 0.2167 | p=0.509 79, q=1.814 23 | Not allowed | ||
M8 | 0.2167 | p0=0.999 99 (p1=0.000 01) p=0.509 81, q=1.814 41, ω=1.216 11 | — | ||
Class III | M0 | 0.2882 | ω=0.288 2 | None | 2Δlnl (M0 vs M3)=607.62 (P<0.001) 2Δlnl (M1 vs M2)=0.00 (P=1.000) 2Δlnl (M7 vs M8)=204.29 (P<0.001) |
M1 | 0.5642 | p0=0.526 87 (p1=0.473 13) | Not allowed | ||
M2 | 0.5642 | p0=0.526 87, p1=0.071 42 (p2=0.401 70), ω2=1.000 00 | — | ||
M3 | 9.5791 | p0=0.307 06, p1=0.473 78 (p2=0.219 16) ω0=0.111 37, ω1=0.111 37, ω2=42.538 39 | Many | ||
M7 | 0.4731 | p=0.778 83, q=0.866 74 | Not allowed | ||
M8 | 9.3514 | p0=0.785 28 (p1=0.214 72) p=1.066 73, q=1.901 71, ω= 42.241 90 | 141 Sites |
Fig. 5 Chromosomal location (A) of the maize DUF1685 gene and genome-wide collinearity analysis (B) The gray lines represent duplication events of all genes in maize, and the red lines represent fragment duplication events within the DUF1685 gene.
顺式作用元件 Cis-acting element | 数量/基因名称 Number/Gene name | 注释 Note |
---|---|---|
ABRE | 3/Zm00001d004209, 1/Zm00001d012154, 4/Zm00001d042503, 3/Zm00001d049091, 1/Zm00001d052162, 2/Zm00001d052162, 4/Zm00001d024004 | ABA响应元件 |
TATA-box | 17/Zm00001d004209, 35/Zm00001d012154, 16/Zm00001d042503, 30/Zm00001d049091, 1/Zm00001d052162, 62/Zm00001d052162, 64/Zm00001d024004 | 转录起始-30核心启动子元件 |
MYC | 4/Zm00001d004209, 3/Zm00001d012154, 2/Zm00001d042503, 2/Zm00001d049091, 1/Zm00001d052162, 4/Zm00001d052162, 4/Zm00001d024004 | 干旱和ABA应答元件 |
G-box | 5/Zm00001d004209, 3/Zm00001d012154, 4/Zm00001d042503, 7/Zm00001d049091, 2/Zm00001d052162, 3/Zm00001d052162, 7/Zm00001d024004 | 光响应元件 |
CAAT-box | 24/Zm00001d004209, 28/Zm00001d012154, 28/Zm00001d042503, 18/Zm00001d049091, 1/Zm00001d052162, 36/Zm00001d052162, 33/Zm00001d024004 | 顺式作用元件 |
MYB | 6/Zm00001d004209, 2/Zm00001d012154,6/Zm00001d042503, 2/Zm00001d049091, 1/Zm00001d052162, 5/Zm00001d052162, 2/Zm00001d024004 | 干旱和ABA应答元件 |
STRE | 6/Zm00001d004209, 6/Zm00001d012154, 3/Zm00001d042503, 3/Zm00001d049091, 1/Zm00001d052162, 2/Zm00001d052162, 9/Zm00001d024004 | 热诱导元件 |
Tab. 3 Analysis of cis-acting elements in promoter of maize DUF1685 gene
顺式作用元件 Cis-acting element | 数量/基因名称 Number/Gene name | 注释 Note |
---|---|---|
ABRE | 3/Zm00001d004209, 1/Zm00001d012154, 4/Zm00001d042503, 3/Zm00001d049091, 1/Zm00001d052162, 2/Zm00001d052162, 4/Zm00001d024004 | ABA响应元件 |
TATA-box | 17/Zm00001d004209, 35/Zm00001d012154, 16/Zm00001d042503, 30/Zm00001d049091, 1/Zm00001d052162, 62/Zm00001d052162, 64/Zm00001d024004 | 转录起始-30核心启动子元件 |
MYC | 4/Zm00001d004209, 3/Zm00001d012154, 2/Zm00001d042503, 2/Zm00001d049091, 1/Zm00001d052162, 4/Zm00001d052162, 4/Zm00001d024004 | 干旱和ABA应答元件 |
G-box | 5/Zm00001d004209, 3/Zm00001d012154, 4/Zm00001d042503, 7/Zm00001d049091, 2/Zm00001d052162, 3/Zm00001d052162, 7/Zm00001d024004 | 光响应元件 |
CAAT-box | 24/Zm00001d004209, 28/Zm00001d012154, 28/Zm00001d042503, 18/Zm00001d049091, 1/Zm00001d052162, 36/Zm00001d052162, 33/Zm00001d024004 | 顺式作用元件 |
MYB | 6/Zm00001d004209, 2/Zm00001d012154,6/Zm00001d042503, 2/Zm00001d049091, 1/Zm00001d052162, 5/Zm00001d052162, 2/Zm00001d024004 | 干旱和ABA应答元件 |
STRE | 6/Zm00001d004209, 6/Zm00001d012154, 3/Zm00001d042503, 3/Zm00001d049091, 1/Zm00001d052162, 2/Zm00001d052162, 9/Zm00001d024004 | 热诱导元件 |
Fig. 7 Expression analysis of maize DUF1685 gene family at different developmental stages under normal growth condition 1: 6-7 internode; 2: 7-8 internode; 3: Vegetative meristem 16-19 days; 4: Ear primordium 2-4 mm; 5: Ear primordium 6-8 mm; 6: Embryo 20 days after pollination; 7: Embryo 38 days after pollination; 8: Endosperm 12 days after pollination; 9: Endosperm crown 27 days after pollination; 10: Germinatin kernels 2 days; 11: Pericarp/Aleurone 27 days after pollination; 12: Leaf zone 1 (Symmetrical); 13: Leaf zone 2 (Stomatal); 14: Leaf zone 3 (Growth); 15: Mature leaf; 16: Primary root; 17: Root - Cortex 5 days; 18: Root - Elongation zone 5 days; 19: Root - Meristem zone 5 days; 20: Secondary root 7-8 days; 21: Mature pollen; 22: Female spikelet collected on day as silk; 23: Silk.
[1] |
BATEMAN A, BIRNEY E, DURBIN R, EDDY S R, HOWE K L, SONNHAMMER E L. The pfam protein families database[J]. Nucleic Acids Research, 2000, 28(1): 263-266.
DOI PMID |
[2] | JIANG J, LI J H, XU Y Y, YE H, BAI Y, ZHOU G X, LOU Y G, XU Z H, KANG C. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice[J]. Plant, Cell & Environment, 2010, 30(6): 690-699. |
[3] |
LEAURE C D, TONG H Y, YUEN G G, HOU X W, SEN X F, HE Z H. Root UV-B sensitive2 acts with root UV-B sensitive1 in a root ultraviolet B-sensing pathway[J]. Plant Physiology, 2009, 150(4): 1902-1915.
DOI PMID |
[4] | CAO X, YANG K Z, XIA C, ZHANG X Q, YE C D. Characterization of DUF724 gene family in Arabidopsis thaliana[J]. Plant Molecular Biology, 2010, 72(1-2): 61-73. |
[5] | ZúñIGA-SáNCHEZ E, SORIANO D, MARTíNEZ- BARA JAS E, OROZCO-SEGOVIA A, GAMBO-DEBUEN A. 642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development[J]. BMC Plant Biology, 2014, 14: 338. |
[6] | JONES-RHOADES M W, BOREVITZ J O, PREUSS D. Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins[J]. PLoS Genetics, 2007, 3(10): 1848-1861. |
[7] | LI X, SUN L J, TAN L B, LIU F X, ZHU Z F, FU Y C, SUN X Y, SUN X W, XIE D X, SUN C Q. TH1, a DUF640 domain-like gene controls lemma and palea development in rice[J]. Plant Molecular Biology, 2012, 78(4/5): 351-359. |
[8] | LUO C K, GUO C M, WANG W J, WANG L J, CHEN L. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice[J]. Plant Cell Reports, 2014, 33(2): 323-336. |
[9] | HOU X, LIANG Y, HE X, SHEN Y. A novel ABA-responsive TaSRHP gene from wheat contributes to enhanced resistance to salt stress in Arabidopsis thaliana[J]. Plant Molecular Biology Reporter, 2013, 31(4): 791-801. |
[10] | PALMEROS-SUáREZ P A, MASSANGE-SáNCHEZ J A, SáNCHEZ-SEGURA L, MARTíNEZ-GALLARDO N A, RANGEL E E, GóMEZ-LEYVAe J F, DéLANO-FRIER J P. AhDGR2, an amaranth abiotic stress-induced DUF642 protein gene, modifies cell wall structure and composition and causes salt and ABA hyper-sensibility in transgenic Arabidopsis[J]. Planta, 2017, 245(3): 623-640. |
[11] | XIE X Q, WANG Y J. VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance[J]. Planta, 2016, 244(5): 1075-1094. |
[12] |
MATSUOKA Y, VIGOUROUX Y, GOODMAN M M, SANCHEZ G J, BUCKLER E, DOEBLEY J. A single domestication for maize shown by multilocus microsatellite genotyping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 6080- 6084.
DOI PMID |
[13] |
SCHNABLE P S, WARE D, FULTON R S, STEIN J C, WEI F S, PASTERNAK S, LIANG C Z, WILSON R K. The B73 maize genome: complexity, diversity, and dynamics[J]. Science, 2009, 326(5956): 1112-1115.
DOI PMID |
[14] | YIN L Q, ZHU Z D, HUANG L J, LUO X, LI Y, XIAO C W, YANG J, WANG J S, ZOU Q, TAO L R, KANG Z M, TANG R, WANG M L, FU S H. DNA repair- and nucleotide metabolism-related genes exhibit differential CHG methylation patterns in natural and synthetic polyploids (Brassica napus L.)[J]. Horticulture Research, 2021, 8(1): 142. |
[15] | SUDHIR K, GLEN S, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology & Evolution, 2016, 33(7): 1870-1874. |
[16] |
YANG Z H. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007, 24(8): 1586-1591.
DOI PMID |
[17] | BALEY T L, BODEN M, BUKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J Y, LI W W, NOBLE W S. MEME Suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(suppl_2): W202-W208. |
[18] |
HU B, JIN J, GUO A Y, ZHANG H, LUO J, GAO G. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
DOI PMID |
[19] |
CHEN C, CHEN H, ZHANG Y, THOMAS H R, XIA R. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
DOI PMID |
[20] | WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012, 40(7): e49. |
[21] | TEAM D C R. R: A Language and environment for statistical computing[J]. R Foundation for Statistical Computing, 2011, 1: 12-21. |
[22] | CHEN S, PENG S, HUANG G, WU K, FU X, CHEN Z. Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis[J]. Plant Molecular Biology, 2003, 51(1): 51-58. |
[23] | SUO J, LIANG X E, PU L, ZHANG Y S, XUE Y B. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.)[J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2003, 1630(1): 25-34. |
[24] | YANG X Y, LI J G, PEI M, GU H, CHEN Z L, QU L J. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development[J]. Plant Cell Reports, 2007, 26(2): 219-228. |
[25] | IWASAKI T, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis[J]. Molecular & General Genetics, 1995, 247(4): 391-398. |
[26] | LIU L, XU W, HU X, LIU H J, LIN Y J. W-box and G-box elements play important roles in early senescence of rice flag leaf[J]. Science Report, 2016, 6: 20881. |
[27] | WILLING R P, MASCARENHAS J P. Analysis of the complexity and diversity of mRNAs from pollen and shoots of Tradescantia[J]. Plant Physiology, 1984, 75(3): 865-868. |
[28] | ALLEN R L, LONSDALE D M. Molecular characterization of one of the maize polygalacturonase gene family members which are expressed during late pollen development[J]. Plant Journal, 2010, 3(2): 261-71. |
[29] | 陈晓阳. 玉米雄性不育基因IPE1克隆与功能分析[D]. 北京: 中国农业大学, 2017. |
CHEN X Y. Cloning and functional analysis of maize male sterility gene IPE1[D]. Beijing: China Agricultural University, 2017. (in Chinese) | |
[30] | BOWERS J E, CHAPMAN B A, RONG J, PATERSON A H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events[J]. Nature, 2003, 422(6930): 433-438. |
[31] | PAUL A, CHATTERJEE A, SUBRAHMANYA S, SHEN G X, MISHRA N. NHX gene family in Camellia sinensis: In-silico genome-wide identification, expression profiles, and regulatory network analysis[J]. Frontiers in Plant Science, 2021, 12: 777884. |
[32] | LI J, ISLAM F, HUANG Q, WANG J, ZHOU W J, XU L, YANG C. Genome-wide characterization of WRKY gene family in Helianthus annuus L. and their expression profiles under biotic and abiotic stresses[J]. PLoS One, 2020, 15(12): e0241965. |
[33] |
ZHU Y, WU N, SONG W L, YIN G J, QIN Y J, YAN Y M, HU Y K. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biology, 2014, 14: 93.
DOI PMID |
[34] | ZHAO K, CHEN S, YAO W, CHENG Z H, ZHOU B R, JIANG T B. Genome-wide analysis and expression profile of the bZIP gene family in poplar[J]. BMC Plant Biology, 2021, 21(1): 122. |
[35] | CHEN Y, ZHOU R, HU Q, WEI W, LIU J. Conservation and divergence of the CONSTANS-Like (COL) genes related to flowering and circadian rhythm in Brassica napus[J]. Frontiers in Plant Science, 2021, 12: 760379. |
[1] | WANG Xiumei, NI Shanshan, LI Qianyu, LI Xiaofang, LIN Zhengchun, CHEN Yukun, LIN Yuling, LAI Zhongxiong, DU Yinggang. Identification and Evolutionary Analysis of the Phospholipase C (PLC) Gene Family Based on Transcriptome in Gerbera jamesonii Bolus [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1267-1273. |
[2] | HONG Pingjing, XU Xiaoping, WANG Jingyu, CHEN Xiaohui, SHEN Xu, LIN Yuling, LAI Zhongxiong. Identification and Functional Analysis of 4CL Gene Family During Early Somatic Embryogenesis in Dimocarpus longan Lour [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 909-919. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||