Chinese Journal of Tropical Crops ›› 2022, Vol. 43 ›› Issue (12): 2395-2404.DOI: 10.3969/j.issn.1000-2561.2022.12.001
• Omics & Biotechnology • Next Articles
GUAN Xin1,2, TU Min2,*(), CAI Haibin1,2, WANG Yunyue1,*(
), HU Yanshi2, ZENG Xia2
Received:
2022-03-11
Revised:
2022-04-14
Online:
2022-12-25
Published:
2023-01-12
Contact:
TU Min,WANG Yunyue
CLC Number:
GUAN Xin, TU Min, CAI Haibin, WANG Yunyue, HU Yanshi, ZENG Xia. Cloning and Expression Analysis of HbRPW8 Gene from Hevea brasiliensis[J]. Chinese Journal of Tropical Crops, 2022, 43(12): 2395-2404.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2022.12.001
引物名称 Primer name | 上游引物序列(5′-3′) Forward primer sequence (5′-3′) | 下游引物序列(5′-3′) Reverse primer sequence (5′-3′) |
---|---|---|
HbRPW8 | TCCCAAGACTCTTCTGTCATCA | TGACGAGAAAAGCGAACCTACA |
HbRPW8-RT | GCTTATGATGCGGGATTT | GCAGGACTGGATGGCTTA |
Hb18S | GCTCGAAGACGATCAGATACC | TTCAGCCTTGCGACCATAC |
Tab. 1 Primer sequences in the study
引物名称 Primer name | 上游引物序列(5′-3′) Forward primer sequence (5′-3′) | 下游引物序列(5′-3′) Reverse primer sequence (5′-3′) |
---|---|---|
HbRPW8 | TCCCAAGACTCTTCTGTCATCA | TGACGAGAAAAGCGAACCTACA |
HbRPW8-RT | GCTTATGATGCGGGATTT | GCAGGACTGGATGGCTTA |
Hb18S | GCTCGAAGACGATCAGATACC | TTCAGCCTTGCGACCATAC |
Fig. 4 Structural analysis of HbRPW8 A: Conserved domain of HbRPW8 protein; B: Prediction of secondary structure of HbRPW8 protein; C: Prediction of tertiary structure of HbRPW8 protein.
Fig. 5 Multiple sequence alignment of HbRPW8 and RPW8 from other plant species Identity of amino acid sequences with 100% was highlighted with black, identity≥75% was highlighted with pink, identity > 50% was highlighted with blue.
顺式作用元件Cis-acting element | 核心序列 Core sequence | 数量Number | 功能 Function |
---|---|---|---|
ABRE | ACGTG | 1 | 参与脱落酸反应的顺式作用元件 |
ARE | AAACCA | 2 | 厌氧诱导所必需的顺式作用调节元件 |
CAAT-box | CCAAT | 19 | 启动子和增强子区域中常见的顺式作用元件 |
G-Box | CACGTT | 1 | 参与光反应的顺式作用调节元件 |
GT1-motif | GGTTAA | 2 | 光响应元件 |
TATA-box | TATATA/ATATAT/TATA/TATAA/ ATATAA/TATAAA/TATAAAA/ TATACA | 122 | 转录启始元件 |
TATC-box | TATCCCA | 1 | 参与赤霉素反应性的顺式作用元件 |
TCA-element | CCATCTTTTT | 1 | 参与水杨酸反应的顺式作用元件 |
TC-rich repeats | ATTCTCTAAC | 1 | 参与防御和应激反应的顺式作用元件 |
TGA-element | AACGAC | 1 | 生长素反应元件 |
Tab. 2 Analysis of cis-elements within HbRPW8 promoter regions in H. brasiliensis
顺式作用元件Cis-acting element | 核心序列 Core sequence | 数量Number | 功能 Function |
---|---|---|---|
ABRE | ACGTG | 1 | 参与脱落酸反应的顺式作用元件 |
ARE | AAACCA | 2 | 厌氧诱导所必需的顺式作用调节元件 |
CAAT-box | CCAAT | 19 | 启动子和增强子区域中常见的顺式作用元件 |
G-Box | CACGTT | 1 | 参与光反应的顺式作用调节元件 |
GT1-motif | GGTTAA | 2 | 光响应元件 |
TATA-box | TATATA/ATATAT/TATA/TATAA/ ATATAA/TATAAA/TATAAAA/ TATACA | 122 | 转录启始元件 |
TATC-box | TATCCCA | 1 | 参与赤霉素反应性的顺式作用元件 |
TCA-element | CCATCTTTTT | 1 | 参与水杨酸反应的顺式作用元件 |
TC-rich repeats | ATTCTCTAAC | 1 | 参与防御和应激反应的顺式作用元件 |
TGA-element | AACGAC | 1 | 生长素反应元件 |
Fig. 7 Expression patterns of HbRPW8 under exogenous hormones and powdery mildew treatments Different lowercae letters indicate significant difference among treatments.
[1] | LIYANAGE K K, KHAN S, BROOKS S, MORTIMER P E, KARUNARATHNA S C, XU J, HYDE K D. Powdery mildew disease of rubber tree[J]. Forest Pathology, 2016, 46(2): 90-103. |
[2] | WU H, PAN Y W, DI R, HE Q G, RAJAOFERA M J, LIU W B, ZHENG F C, MIAO W G. Molecular identification of the powdery mildew fungus infecting rubber trees in China[J]. Forest Pathology, 2019, 49(5): 12519. |
[3] | 柯宇航, 刘明洋, 王燕, 梁晓宇, 王萌, 张宇. 橡胶树HbRPM1-3基因克隆及其应答白粉菌侵染的功能分析[J]. 植物生理学报, 2021, 57(11): 2167-2178. |
KE Y H, LIU M Y, WANG Y, LIANG X Y, WANG M, ZHANG Y. Cloning of HbRPM1-3 gene from Hevea brasiliensis and functional analysis of its response to powdery mildew infection[J]. Plant Physiology Journal, 2021, 57(11): 2167-2178. (in Chinese) | |
[4] | XIAO S, CHAROENWATTANA P, HOLCOMBE L, TURNER J G. The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco[J]. Molecular Plant-Microbe Interactions, 2003, 16(4): 289-94. |
[5] | LI Q, LI J, SUN J L, MA X F, WANG T T, BERKEY R, YANG H, NIU Y Z, FAN J, LI Y, XIAO S, WANG W M. Multiple evolutionary events involved in maintaining homologs of resistance to powdery mildew 8 in Brassica napus[J]. Frontiers in Plant Science, 2016, 7: 1065. |
[6] | HU Y, LI Y, HOU F, WAN D, CHENG Y, HAN Y, GAO Y, LIU J, GUO Y, XIAO S, WANG Y, WEN Y Q. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera)[J]. Plant Science, 2018, 267: 20-31. |
[7] | XIAO S, ELLWOOD S, CALIS O, PATRICK E, LI T, COLEMAN M, TURNER J G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8[J]. Science, 2001, 291(5501): 118-120. |
[8] | 马辉. 中国野生华东葡萄VpR82H基因的克隆与功能分析[D]. 杨凌: 西北农林科技大学, 2014. |
MA H. Molecular cloningand function alanalysis of VPR82H gene in Chinese wild Vitis pseudoreticulata[D]. Yangling: Northwest A & F University, 2014. (in Chinese) | |
[9] | XIAO S, CALIS O, PATRICK E, ZHANG G, CHAROENWATTANA P, MUSKETT P, PARKER J E, TURNER J G. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis[J]. The Plant Journal, 2005, 42(1): 95-110. |
[10] | ORGIL U, ARAKI H, TANGCHAIBURANA S, BERKEY R, XIAO S. Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana[J]. Genetics, 2007, 176(4): 2317-2333. |
[11] | NEPAL M P, ANDERSEN E J, NEUPANE S, BENSON B V. Comparative genomics of non-TNL disease resistance genes from six plant species[J]. Genes, 2017, 8(10): 249. |
[12] | 王文明, 李燕, 徐永菊, 文颖强, 杨足君, 肖顺元. 拟南芥两个广谱抗病同源基因RPW8.1和RPW8.2的功能分化[C]// 中国植物病理学会2011年学术年会论文集. 北京: 中国农业科学技术出版社, 2011: 455-456. |
WANG W M, LI Y, XU Y J, WEN Y Q, YANG Z J, XIAO S Y. Functional differentiation of two broad-spectrum disease resistance homologous genes RPW8.1 and RPW8.2 in Arabidopsis[C]// Proceedings of the Annual Meeting of Chinese Society for Plant Pathology (2011). Beijing: China Agricultural Science and Technology Press, 2011: 455-456. (in Chinese) | |
[13] | LI Y, ZHANG Y, WANG Q X, WANG T T, CAO X L, ZHAO Z X, ZHAO S L, XU Y J, XIAO Z Y, LI J L, FAN J, YANG H, HUANG F, XIAO S, WANG W M. Resistance to powdery mildew 8.1 boosts pattern-triggered immunity against multiple pathogens in Arabidopsis and rice[J]. Plant Biotechnology Journal, 2018, 16(2): 428-441. |
[14] | ZHAO Z X, FENG Q, LIU P Q, HE X R, ZHAO J H, XU Y J, ZHANG L L, HUANG Y Y, ZHAO J Q, FAN J, LI Y, XIAO S, WANG W M. RPW8.1 enhances the ethylene-signaling pathway to feedback-attenuate its mediated cell death and disease resistance in Arabidopsis[J]. New Phytologist, 2021, 229(1): 516-531. |
[15] | MA X F, LI Y, SUN J L, WANG T T, FAN J, LEI Y, HUANG Y Y, XU Y J, ZHAO J Q, XIAO S, WANG W M. Ectopic expression of resistance to powdery mildew 8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis[J]. Plant & Cell Physiology, 2014, 55(8): 1484-1496. |
[16] | WANG W, YANG X, TANGCHAIBURANA S, NDEH R, MARKHAM J E, TSEGAYE Y, DUNN T M, WANG G L, BELLIZZI M, PARSONS J F, MORRISSEY D, BRAVO J E, LYNCH D V, XIAO S. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis[J]. The Plant Cell, 2008, 20(11): 3163-3179. |
[17] | WANG W, WEN Y, BERKEY R, XIAO S. Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance[J]. The Plant Cell, 2013, 21(9): 2898-2913. |
[18] | HUANG Y Y, SHI Y, LEI Y, LI Y, FAN J, XU YJ, MA X F, ZHAO J Q, XIAO S, WANG W M. Functional identification of multiple nucleocytoplasmic trafficking signals in the broad-spectrum resistance protein RPW8.2[J]. Planta, 2014, 239(2): 455-468. |
[19] | ZHONG Y, YIN H, SARGENT D J, MALNOY M, CHENG Z M. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species[J]. BMC Genomics, 2015, 16(1): 77. |
[20] | 马辉, 韩永涛, 高玉荣, 徐虹, 王跃进, 文颖强. 葡萄中RPW8.2同源基因克隆与表达分析[J]. 西北林学院学报, 2015, 30(1): 60-68. |
MA H, HAN Y T, GAO Y R, XU H, WANG Y J, WEN Y Q. Molecular cloning and expression analysis of RPW8.2 homologous genes in grapevine[J]. Journal of Northwest Forestry University, 2015, 30(1): 60-68. (in Chinese) | |
[21] | ZHONG Y, CHENG Z M. A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication[J]. Scientific Reports, 2016, 6: 32923. |
[22] | 许靖诗, 王广军, 额尔敦达来, 乌云塔娜. 杏RPW8基因家族鉴定与表达量分析[J]. 中南林业科技大学学报, 2019, 39(10): 123-131. |
XU J S, WANG G J, EERDUN D L, WUYUN T N. Identification and expression analysis of RPW8 gene family in apricot[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 123-131. (in Chinese) | |
[23] | 高凤菊, 张淑红, 张运峰, 宋瑞生, 韩靖玲, 刘海英. 草莓抗白粉病RPW8同源基因的序列特征分析[J]. 唐山师范学院学报, 2020, 42(6): 51-55. |
GAO F J, ZHANG S H, ZHANG Y F, SONG R S, HAN J L, LIU H Y. Sequence analysis of strawberry RPW8 resistance genes to powdery mildew[J]. Journal of Tangshan Normal University, 2020, 42(6): 51-55. (in Chinese) | |
[24] | 孙金龙. 油菜RPW8同源基因的序列多态性分析及功能初探[D]. 成都: 四川农业大学, 2014. |
SUN J L. Polymorphism analysis and functional identification of RPW8 homologues in Brassica napus[D]. Chengdu: Sichuan Agricultural University, 2014. (in Chinese) | |
[25] | 侯凤娟. RPW8.2转基因葡萄生物学特性观察及白粉病抗性评价[D]. 杨凌: 西北农林科技大学, 2018. |
HOU F J. Observation of biological characteristic and evaluation of resistance to powdery mildew of RPW8.2 transgenic grapevine[D]. Yangling: Northwest A & F University. 2018. (in Chinese) | |
[26] | WANG L F. Physiological and molecular responses to drought stress in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. Plant Physiology and Biochemistry, 2014, 83: 243-249. |
[27] |
覃碧, 王肖肖, 杨玉双, 聂秋海, 陈秋惠, 刘实忠. 橡胶草TkAPC10基因的鉴定及其表达模式分析[J]. 植物研究, 2022, 42(5): 830-839.
DOI |
QIN B, WANG X X, YANG Y S, NIE Q H, CHEN Q H, LIU S Z. Identification and expression pattern analysis of TkAPC10 in Taraxacum kok-saghyz rodin[J]. Bulletin of Botanical Research, 2022, 42(5): 830-839.. (in Chinese)
DOI |
|
[28] |
WANG W, DEVOTO A, TURNER J G, XIAO S. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens[J]. Molecular Plant-Microbe Interactions, 2007, 20(8): 966-976.
DOI PMID |
[29] | HUANG Y Y, ZHANG L L, MA X F, ZHAO Z X, ZHAO J H, ZHAO J Q, FAN J, LI Y, HE P, XIAO S, WANG W M. Multiple intramolecular trafficking signals in resistance to powdery mildew 8.2 are engaged in activation of cell death and defense[J]. The Plant Journal, 2019, 98(1): 55-70. |
[30] | ALEXANDRE R, MURRAY G, JONATHAN D G J. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism[J]. Annual Review of Phytopathology, 2011, 49(1): 317-343. |
[31] |
HOU X, DING L, YU H. Crosstalk between GA and JA signaling mediates plant growth and defense[J]. Plant Cell Reports, 2013, 32(7): 1067-1074.
DOI PMID |
[32] |
RADWAN O, GANDHI S, HEESACKER A, WHITAKER B, TAYLOR C, PLOCIK A, KESSELI R, KOZIK A, MICHELMORE R W, KNAPP S J. Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower[J]. Molecular Genetics and Genomics, 2008, 280(2): 111-125.
DOI PMID |
[33] | LI X, WU J, YIN L, ZHANG Y, QU J, LU J. Comparative transcriptome analysis reveals defense-related genes and pathways against downy mildew in Vitis amurensis grapevine[J]. Plant Physiol Biochem, 2015, 95: 1-14. |
[34] | LAI G, SONG S, LIU Y X, FU P N, XIANG J, LU J. RPW8 promoter is involved in pathogen-and stress-inducible expression from Vitis pseudoreticulata[J]. Journal of Phytopathology, 2018, 167(2): 65-74. |
[35] | ZOU X, GUO R, ZHANG L, DUAN K, GAO Q. Identification of FaNBS-encoding genes responsive to Colletotrichum fructicola infection in strawberry (Fragaria × ananassa Duchase)[J]. Australasian Plant Pathology, 2018, 47(5): 499-510. |
[36] |
郑永杰, 伍艳芳, 李江, 章挺, 汪信东. 樟树NBS-LRR类抗病基因家族分析与CcRNL基因克隆[J]. 生物技术通报, 2018, 34(2): 142-149.
DOI |
ZHENG Y J, WU Y F, LI J, ZHANG T, WANG X D. Identification of NBS-LRR-like disease-resistant genes in Cinnamomum camphora and clone of two CcRNL genes[J]. Biotechnology Bulletin, 2018, 34(2): 142-149. (in Chinese) | |
[37] | 王雪. CsRSF1和CsRSF2在黄瓜响应白粉病菌侵染过程中的作用[D]. 沈阳: 沈阳农业大学, 2020. |
WANG X. The role of CsRSF1 and CsRSF2 in the regulation of Cucumis sativus resistance to Sphaerotheca fuliginea[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese) | |
[38] | WANG Y, QI C, LUO Y, ZHANG F, DAI Z, LI M, QU S. Identification and mapping of CpPM10.1, a major gene involved in powdery mildew (race 2 France of Podosphaera xanthii) resistance in zucchini (Cucurbita pepo L.)[J]. Theoretical and Applied Genetics, 2021, 134(8): 2531-2545. |
[39] | XIAO S, CALIS O, PATRICK E, ZHANG G, CHAROENWATTANA P, MUSKETT P, TURNER J G. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis[J]. The Plant Journal, 2005, 42(1): 95-110. |
[40] | XU Y J, LEI Y, LI R, ZHANG L L, ZHAO Z X, ZHAO, JING H, FAN J, LI Y, YANG H, SHANG J, XIAO S Y, WANG W M. XAP5 circadian timekeeper positively regulates resistance to powdery mildew8.1-mediated immunity in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 2044. |
[41] | YANG X H, WANG W M, COLEMAN M, ORGIL U, FENG J, MA X F, FERL R, TURNER J G, XIAO S Y. Arabidopsis 14-3-3 lambda is a positive regulator of RPW8- mediated disease resistance[J]. The Plant Journal, 2009, 60(3): 539-550. |
[42] | WANG W M, MA X F, ZHANG Y, LUO M C, WANG G L, MARIA B, XIONG X Y, XIAO S Y. PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis[J]. Molecular Plant, 2012, 5(5): 1125-1137. |
[43] | ZHAO Z X, XU Y J, LEI Y, LI Q, ZHAO J Q, LI Y, FAN J, XIAO S Y, WANG W M. ANNEXIN 8 negatively regulates RPW8.1-mediated cell death and disease resistance in Arabidopsis[J]. Journal of Integrative Plant Biology, 2021, 63(2): 378-392. |
[44] | WANG W M, YANG X H, TANGCHAIBURANA S, NDEH R, MARKHAM J E, TSEGAYE Y, DUNN T M, WANG G L, BELLIZZI M, PARSONS J F, MORRISSEY D, BRAVO J E, LYNCH D V, XIAO S Y. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis.[J]. The Plant Cell, 2008, 20(11): 3163-3179. |
[1] | WEI Mingming, HUANG Xiao, LI Weiguo, HUANG Huasun. Using the SSR Fluorescent Labeling to Establish SSR Fingerprints for 37 Cultivars in rubber tree (Hevea brasiliensis) [J]. Chinese Journal of Tropical Crops, 2022, 43(8): 1565-1576. |
[2] | ZHANG Weisheng, LIU Zhichao, CAO Hongxing, YAN Yan, CHEN Ping, LI Rui. Cloning and Expression Analysis of DWF5 Genes Involved in the Sterol Synthesis in Oil Palm [J]. Chinese Journal of Tropical Crops, 2022, 43(6): 1095-1101. |
[3] | WANG Dan, XU Bingqiang, SUN Yong, PENG Cunzhi, CHANG Lili, TONG Zheng. Comparative Proteomics Analysis and Identification of Phosphorylated Protein in Latex of Rubber Tree Clones PR107 and CATAS8-79 [J]. Chinese Journal of Tropical Crops, 2022, 43(5): 904-914. |
[4] | XU Shuo, ZOU Zhi, XIAO Yanhua, Zhang Li, KONG Hua, GUO Jingyuan, GUO Anping. Cloning and Functional Characterization of CeWRI1, a Gene Involved in Oil Accumulation from Tigernut (Cyperus esculentus L.) Tubers [J]. Chinese Journal of Tropical Crops, 2022, 43(5): 923-929. |
[5] | GUO Bingbing, DAI Longjun, YANG Hong, ZHAO Xizhu, WANG Lifeng. Research Progress on Mechanism and Regulation of Latex Flow in Hevea brasiliensis Muell. Arg. [J]. Chinese Journal of Tropical Crops, 2022, 43(4): 754-768. |
[6] | LU Yilong, LIU Xing, ZHANG Yuhao, LIU Kaiye, TANG Chaorong. Cloning and Primary Functional Analysis of HbREF3 Gene from Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(3): 491-498. |
[7] | WANG Mengdi, LI Rui, CAO Hongxin, JIN Longfei, LI Xinguo. Identification and Expression Analysis of Δ9 Stearoyl-ACP Desaturase Gene in Oil Palm [J]. Chinese Journal of Tropical Crops, 2022, 43(2): 235-243. |
[8] | XUE Xinxin, REN Changqi, XU Zhengwei, WANG Wenbin, ZHANG Yongfa, LUO Xuehua, ZHAO Chunmei. Characteristic of Defoliation of Rubber Plantations (Hevea brasiliensis) in Hainan, China [J]. Chinese Journal of Tropical Crops, 2022, 43(2): 377-384. |
[9] | QIAO Xueying, ZHENG Yujiao, YANG Jianghua, ZENG Changying, ZOU Zhi. Gene Cloning, Subcellular Localization and Multimerization Analysis of HbPIP1;1 from Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(12): 2405-2412. |
[10] | SUN Yeqiao, WANG Jue, HU Lisong, WU Baoduo, HAO Chaoyun, FAN Rui. Cloning and Bioinformatics Analysis of Pepper PnCAD Gene by Race [J]. Chinese Journal of Tropical Crops, 2022, 43(12): 2422-2430. |
[11] | ZHANG Hongtao, XIAO Xiaohu, YANG Jianghua, QIN Yunxia, LONG Xiangyu, YIN Hongyan, FANG Yongjun. Identification and Expression Analysis of YABBY Gene Family in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(11): 2188-2198. |
[12] | YAO Xingcheng, TU Hanqi, ZHOU Jun, CHEN Xianhong, CHEN Qing, LIN Weifu, WANG Jun. Quantification and Characterization of Rubber from Primary Laticifers of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(11): 2207-2214. |
[13] | GUO Jing, YUAN Hongmei. Cloning, Expression, Purification and Enzyme Activity Analysis of Protein Kinase HbBIN2 from Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(10): 1965-1971. |
[14] | ZHOU Yu, CHEN Chuanmin, WANG Jian, ZHOU Mingqiang, YANG Xiaoyu, BNA Xiuwen, LIU Fanzhi, YANG Chenglong. Genome-wide Identification and Expression Analysis of bZIP Gene Family under Abiotic Stress in Coix lacryma-jobi L. [J]. Chinese Journal of Tropical Crops, 2022, 43(10): 2006-2020. |
[15] | XIAO Xiaohu, LIN Xianzu, LONG Xiangyu, QIN Yunxia, YANG Jianghua, FANG Yongjun. Identifcation and Expression of KT/HAK/KUP Genes in Hevea brasliensis [J]. Chinese Journal of Tropical Crops, 2022, 43(1): 1-8. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||