Chinese Journal of Tropical Crops ›› 2022, Vol. 43 ›› Issue (11): 2383-2393.DOI: 10.3969/j.issn.1000-2561.2022.11.023
• Post-harvest Treatment & Quality Safety • Previous Articles
LIU Jinxian1,2, LU Li1,2, FU Xianyu1,2, SHI Lingshan1,2, WU Guangheng3,*()
Received:
2022-03-28
Revised:
2022-04-17
Online:
2022-11-25
Published:
2022-12-12
Contact:
WU Guangheng
About author:
*WU Guangheng,E-mail:wugh@wuyiu.edu.cn。CLC Number:
LIU Jinxian, LU Li, FU Xianyu, SHI Lingshan, WU Guangheng. Changes of Main Biochemical Components and Expression of Related Enzyme Genes of Qilan Autumn Black Tea During Processing[J]. Chinese Journal of Tropical Crops, 2022, 43(11): 2383-2393.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2022.11.023
基因 Gene | 引物(5°-3°) Primer (5°-3°) | 序列 Sequence |
---|---|---|
多酚氧化酶基因1 Polyphenol oxidase, PPO1 | CsPPO1-F | CCATCTGGAAGAGTTTGGGT |
CsPPO1-R | CCTTCACTTTGACAGGCTGA | |
多酚氧化酶基因2 Polyphenol oxidase, PPO2 | CsPPO2-F | ATCTGGAAGAGTTTGGGTAGGC |
CsPPO2-R | CACTTTGACAGGCTGAGCATTC | |
苯丙氨酸脱氨酶基因 Phenylalanine ammonialyase, PAL | PAL-F | CAATAGGGAAGCTCATGTTTGC |
PAL-R | CGCTTTGGACATGGTTGGTTAC | |
肉桂酸羟化酶基因 Cinnamate4-hydroxylase, C4H | C4H-F | TCACCGAGCCAGACACCTAC |
C4H-R | CCTTAGCCTCCTCTTCCAAGA | |
查耳酮合成酶基因 Chalcone synthase, CHS | CHS-F | GTGGGCCTTACATTTCATCTC |
CHS-R | TCTAGTATGAATAGCACGCAC | |
查耳酮异构酶基因 Chalcone isomerase, CHI | CHI-F | GTTAAGTGGAAGGGCAAGAC |
CHI-R | GAAAGCAATCGTCAATGATCC | |
黄烷酮3-羟化酶基因 Flavanone 3-hydroxylase, F3H | F3H-F | TCTACCCGAAATGCCCACAAC |
F3H-R | CCTCCCATTGCTTAGATAATG | |
黄烷酮3'5'-羟化酶基因 Flavonoid3, 5'-hydroxylase, F3'5'H | F3°5°H-F | GAGCACACGACGAGATGGAT |
F3°5°H-R | GTCTTTGCATTCTTTCCACTC | |
黄酮醇合成酶基因 Flavonol synthase, FLS | FLS-F | GCATGAGGTCAAGGAGGCTGT |
FLS-R | GACAATCAGGGCATTAGGGATG | |
二氢黄酮醇4-还原酶基因 Dihydroflavonol 4-reductase, DFR | DFR-F | CACTAGGAATGAAGGACACTAC |
DFR-F | GAACGACACAACTGGCAAGT | |
无色花色素还原酶基因 Leucoanthocyanidin reductase, LAR | LAR-F | CTATGACAATACTCACCCATC |
LAR-R | GAGTGCGTCCAATCTTCTTCT | |
花青素还原酶基因 Anthocyanidin reductase, ANR | ANR-F | TCGAAAACACTAGCTGAGAAAG |
ANR-R | GCTCGGGAACACTGGTATTG | |
18S rRNA | 18S rRNA-F | CCTGAGAAACGGCTACCACA |
18S rRNA-R | CACCAGACTTGCCCTCCA |
Tab. 1 Fluorescent quantitative PCR primers of related enzyme genes
基因 Gene | 引物(5°-3°) Primer (5°-3°) | 序列 Sequence |
---|---|---|
多酚氧化酶基因1 Polyphenol oxidase, PPO1 | CsPPO1-F | CCATCTGGAAGAGTTTGGGT |
CsPPO1-R | CCTTCACTTTGACAGGCTGA | |
多酚氧化酶基因2 Polyphenol oxidase, PPO2 | CsPPO2-F | ATCTGGAAGAGTTTGGGTAGGC |
CsPPO2-R | CACTTTGACAGGCTGAGCATTC | |
苯丙氨酸脱氨酶基因 Phenylalanine ammonialyase, PAL | PAL-F | CAATAGGGAAGCTCATGTTTGC |
PAL-R | CGCTTTGGACATGGTTGGTTAC | |
肉桂酸羟化酶基因 Cinnamate4-hydroxylase, C4H | C4H-F | TCACCGAGCCAGACACCTAC |
C4H-R | CCTTAGCCTCCTCTTCCAAGA | |
查耳酮合成酶基因 Chalcone synthase, CHS | CHS-F | GTGGGCCTTACATTTCATCTC |
CHS-R | TCTAGTATGAATAGCACGCAC | |
查耳酮异构酶基因 Chalcone isomerase, CHI | CHI-F | GTTAAGTGGAAGGGCAAGAC |
CHI-R | GAAAGCAATCGTCAATGATCC | |
黄烷酮3-羟化酶基因 Flavanone 3-hydroxylase, F3H | F3H-F | TCTACCCGAAATGCCCACAAC |
F3H-R | CCTCCCATTGCTTAGATAATG | |
黄烷酮3'5'-羟化酶基因 Flavonoid3, 5'-hydroxylase, F3'5'H | F3°5°H-F | GAGCACACGACGAGATGGAT |
F3°5°H-R | GTCTTTGCATTCTTTCCACTC | |
黄酮醇合成酶基因 Flavonol synthase, FLS | FLS-F | GCATGAGGTCAAGGAGGCTGT |
FLS-R | GACAATCAGGGCATTAGGGATG | |
二氢黄酮醇4-还原酶基因 Dihydroflavonol 4-reductase, DFR | DFR-F | CACTAGGAATGAAGGACACTAC |
DFR-F | GAACGACACAACTGGCAAGT | |
无色花色素还原酶基因 Leucoanthocyanidin reductase, LAR | LAR-F | CTATGACAATACTCACCCATC |
LAR-R | GAGTGCGTCCAATCTTCTTCT | |
花青素还原酶基因 Anthocyanidin reductase, ANR | ANR-F | TCGAAAACACTAGCTGAGAAAG |
ANR-R | GCTCGGGAACACTGGTATTG | |
18S rRNA | 18S rRNA-F | CCTGAGAAACGGCTACCACA |
18S rRNA-R | CACCAGACTTGCCCTCCA |
工序 Procedure | 儿茶素Catechins/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GC | CG | C | EGCG | EC | GCG | ||||||
XY | 0.315±0.016a | 0.009±0.003c | 0.159±0.002bc | 10.20±0.37a | 0.764±0.008a | 0.122±0.004a | |||||
WD5 | 0.301±0.009ab | 0.009±0.001c | 0.150±0.009c | 10.21±0.52ab | 0.774±0.056a | 0.118±0.008a | |||||
WD10 | 0.299±0.007ab | 0.008±0.001c | 0.151±0.006c | 10.40±0.41ab | 0.795±0.032a | 0.124±0.005a | |||||
WD15 | 0.286±0.020b | 0.008±0.001c | 0.146±0.004c | 9.57±0.63b | 0.750±0.019a | 0.122±0.008a | |||||
RN | 0.109±0.002c | 0.010±0.001c | 0.205±0.011a | 4.90±0.21c | 0.610±0.028b | 0.081±0.003b | |||||
FJ4 | 0.005±0.001d | 0.099±0.003a | 0.171±0.011b | 1.18±0.05d | 0.138±0.033c | 0.031±0.001c | |||||
FJ8 | 0.005±0.002d | 0.080±0.001b | 0.001±0.001d | 0.74±0.03d | 0.062±0.001d | 0.009±0.005d | |||||
工序 Procedure | 儿茶素Catechins/% | 茶多酚 Tea polyphenols/% | 黄酮 Flavones/(mg·g-1) | ||||||||
EGC | ECG | 儿茶素总量 | 酯型儿茶素 | 非酯型儿茶素 | |||||||
XY | 3.45±0.07a | 2.12±0.06ab | 17.13±0.46a | 12.44±0.44ab | 4.69±0.06a | 22.36±0.18a | 5.47±0.03f | ||||
WD5 | 3.49±0.24a | 2.19±0.10a | 17.24±0.92a | 12.53±0.63ab | 4.71±0.29a | 21.72±1.58a | 5.58±0.02e | ||||
WD10 | 3.49±0.16a | 2.23±0.08a | 17.49±0.60a | 12.76±0.50a | 4.73±0.14a | 20.08±0.39b | 6.51±0.05d | ||||
WD15 | 3.11±0.13b | 2.06±0.13b | 16.05±0.93b | 11.76±0.76b | 4.29±0.17b | 19.86±0.69b | 6.51±0.04d | ||||
RN | 1.16±0.09c | 1.66±0.04c | 8.73±0.35c | 6.65±0.25c | 2.08±0.11c | 18.96±0.19bc | 7.59±0.05c | ||||
FJ4 | 0.31±0.01d | 0.63±0.003d | 2.55±0.10d | 1.93±0.05d | 0.62±0.05d | 18.25±0.29c | 10.12±0.05b | ||||
FJ8 | 0.22±0.01d | 0.35±0.02e | 1.47±0.06e | 1.18±0.05d | 0.29±0.005e | 16.23±0.61d | 10.45±0.02a |
Tab. 2 Dynamic changes of polyphenols in Qilan autumn black tea during processing
工序 Procedure | 儿茶素Catechins/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
GC | CG | C | EGCG | EC | GCG | ||||||
XY | 0.315±0.016a | 0.009±0.003c | 0.159±0.002bc | 10.20±0.37a | 0.764±0.008a | 0.122±0.004a | |||||
WD5 | 0.301±0.009ab | 0.009±0.001c | 0.150±0.009c | 10.21±0.52ab | 0.774±0.056a | 0.118±0.008a | |||||
WD10 | 0.299±0.007ab | 0.008±0.001c | 0.151±0.006c | 10.40±0.41ab | 0.795±0.032a | 0.124±0.005a | |||||
WD15 | 0.286±0.020b | 0.008±0.001c | 0.146±0.004c | 9.57±0.63b | 0.750±0.019a | 0.122±0.008a | |||||
RN | 0.109±0.002c | 0.010±0.001c | 0.205±0.011a | 4.90±0.21c | 0.610±0.028b | 0.081±0.003b | |||||
FJ4 | 0.005±0.001d | 0.099±0.003a | 0.171±0.011b | 1.18±0.05d | 0.138±0.033c | 0.031±0.001c | |||||
FJ8 | 0.005±0.002d | 0.080±0.001b | 0.001±0.001d | 0.74±0.03d | 0.062±0.001d | 0.009±0.005d | |||||
工序 Procedure | 儿茶素Catechins/% | 茶多酚 Tea polyphenols/% | 黄酮 Flavones/(mg·g-1) | ||||||||
EGC | ECG | 儿茶素总量 | 酯型儿茶素 | 非酯型儿茶素 | |||||||
XY | 3.45±0.07a | 2.12±0.06ab | 17.13±0.46a | 12.44±0.44ab | 4.69±0.06a | 22.36±0.18a | 5.47±0.03f | ||||
WD5 | 3.49±0.24a | 2.19±0.10a | 17.24±0.92a | 12.53±0.63ab | 4.71±0.29a | 21.72±1.58a | 5.58±0.02e | ||||
WD10 | 3.49±0.16a | 2.23±0.08a | 17.49±0.60a | 12.76±0.50a | 4.73±0.14a | 20.08±0.39b | 6.51±0.05d | ||||
WD15 | 3.11±0.13b | 2.06±0.13b | 16.05±0.93b | 11.76±0.76b | 4.29±0.17b | 19.86±0.69b | 6.51±0.04d | ||||
RN | 1.16±0.09c | 1.66±0.04c | 8.73±0.35c | 6.65±0.25c | 2.08±0.11c | 18.96±0.19bc | 7.59±0.05c | ||||
FJ4 | 0.31±0.01d | 0.63±0.003d | 2.55±0.10d | 1.93±0.05d | 0.62±0.05d | 18.25±0.29c | 10.12±0.05b | ||||
FJ8 | 0.22±0.01d | 0.35±0.02e | 1.47±0.06e | 1.18±0.05d | 0.29±0.005e | 16.23±0.61d | 10.45±0.02a |
工序 Procedure | 茶黄素单体 Theaflavin monomers | 茶黄素总量 Total theaflavins | |||
---|---|---|---|---|---|
TF | TFDG | TF-3-G | TF-3°-G | ||
XY | 0.17±0.005e | ND | 0.72±0.001c | ND | 0.89±0.005d |
WD5 | 0.18±0.006e | ND | 0.73±0.005c | ND | 0.90±0.010d |
WD10 | 0.25±0.008d | ND | 0.73±0.001c | ND | 0.97±0.009d |
WD15 | 0.26±0.010d | ND | 0.74±0.003c | ND | 1.00±0.014d |
RN | 1.08±0.044b | 1.33±0.069c | 1.72±0.078b | 0.35±0.008c | 4.48±0.191c |
FJ4 | 1.22±0.014a | 2.97±0.018a | 4.02±0.007a | 0.81±0.014a | 9.03±0.052a |
FJ8 | 0.96±0.069c | 2.60±0.100b | 4.05±0.150a | 0.73±0.032b | 8.34±0.314b |
Tab. 3 Dynamic changes of theaflavins component in Qilan autumn black tea during processing mg/g
工序 Procedure | 茶黄素单体 Theaflavin monomers | 茶黄素总量 Total theaflavins | |||
---|---|---|---|---|---|
TF | TFDG | TF-3-G | TF-3°-G | ||
XY | 0.17±0.005e | ND | 0.72±0.001c | ND | 0.89±0.005d |
WD5 | 0.18±0.006e | ND | 0.73±0.005c | ND | 0.90±0.010d |
WD10 | 0.25±0.008d | ND | 0.73±0.001c | ND | 0.97±0.009d |
WD15 | 0.26±0.010d | ND | 0.74±0.003c | ND | 1.00±0.014d |
RN | 1.08±0.044b | 1.33±0.069c | 1.72±0.078b | 0.35±0.008c | 4.48±0.191c |
FJ4 | 1.22±0.014a | 2.97±0.018a | 4.02±0.007a | 0.81±0.014a | 9.03±0.052a |
FJ8 | 0.96±0.069c | 2.60±0.100b | 4.05±0.150a | 0.73±0.032b | 8.34±0.314b |
Fig. 1 Dynamic changes of thearubigins and theabrownins in Qilan autumn black tea during processing Different lowercase letters indicate significant difference among treatments (P<0.05).
Fig. 2 Dynamic changes of water extract (A), free amino acid and caffeine (B) during processing of Qilan autumn black tea Different lowercase letters indicate significant difference among treatments (P<0.05).
Fig. 3 Changes of PPO enzyme activity and relative expression of CsPPO1 and CsPPO12 genes during processing of Qilan autumn black tea Different lowercase letters indicate significant difference among treatments (P<0.05).
Fig. 4 Relative expression level of key enzyme genes of catechins metabolism during processing of Qilan black tea in autumn Different lowercase letters indicate significant difference among treatments (P<0.05).
指标 Index | PAL | CHS | C4H | CHI | F3H | F3°5°H | FLS | DFR | LAR | ANR |
---|---|---|---|---|---|---|---|---|---|---|
GC | 0.482 | 0.428 | 0.541 | 0.365 | 0.449 | 0.449 | 0.541 | 0.750 | 0.421 | 0.461 |
CG | -0.361 | -0.354 | -0.416 | -0.485 | -0.303 | -0.312 | -0.386 | -0.539 | -0.280 | -0.309 |
C | 0.157 | 0.209 | 0.194 | 0.394 | 0.130 | 0.148 | 0.174 | 0.178 | 0.132 | 0.142 |
EGCG | 0.440 | 0.394 | 0.501 | 0.358 | 0.407 | 0.408 | 0.502 | 0.714 | 0.380 | 0.421 |
EC | 0.387 | 0.368 | 0.450 | 0.435 | 0.341 | 0.349 | 0.434 | 0.616 | 0.318 | 0.354 |
GCG | 0.426 | 0.390 | 0.494 | 0.406 | 0.379 | 0.385 | 0.469 | 0.671 | 0.388 | 0.388 |
EGC | 0.448 | 0.394 | 0.506 | 0.315 | 0.425 | 0.423 | 0.521 | 0.737 | 0.397 | 0.441 |
ECG | 0.381 | 0.360 | 0.443 | 0.410 | 0.341 | 0.347 | 0.437 | 0.624 | 0.317 | 0.356 |
TCA | 0.436 | 0.392 | 0.497 | 0.361 | 0.404 | 0.405 | 0.499 | 0.709 | 0.377 | 0.418 |
Tab. 4 Correlation analysis between catechins components and expression level of related enzyme genes
指标 Index | PAL | CHS | C4H | CHI | F3H | F3°5°H | FLS | DFR | LAR | ANR |
---|---|---|---|---|---|---|---|---|---|---|
GC | 0.482 | 0.428 | 0.541 | 0.365 | 0.449 | 0.449 | 0.541 | 0.750 | 0.421 | 0.461 |
CG | -0.361 | -0.354 | -0.416 | -0.485 | -0.303 | -0.312 | -0.386 | -0.539 | -0.280 | -0.309 |
C | 0.157 | 0.209 | 0.194 | 0.394 | 0.130 | 0.148 | 0.174 | 0.178 | 0.132 | 0.142 |
EGCG | 0.440 | 0.394 | 0.501 | 0.358 | 0.407 | 0.408 | 0.502 | 0.714 | 0.380 | 0.421 |
EC | 0.387 | 0.368 | 0.450 | 0.435 | 0.341 | 0.349 | 0.434 | 0.616 | 0.318 | 0.354 |
GCG | 0.426 | 0.390 | 0.494 | 0.406 | 0.379 | 0.385 | 0.469 | 0.671 | 0.388 | 0.388 |
EGC | 0.448 | 0.394 | 0.506 | 0.315 | 0.425 | 0.423 | 0.521 | 0.737 | 0.397 | 0.441 |
ECG | 0.381 | 0.360 | 0.443 | 0.410 | 0.341 | 0.347 | 0.437 | 0.624 | 0.317 | 0.356 |
TCA | 0.436 | 0.392 | 0.497 | 0.361 | 0.404 | 0.405 | 0.499 | 0.709 | 0.377 | 0.418 |
[1] | 敬廷桃, 钟应富, 袁林颖, 周正科. 改善夏秋绿茶滋味品质研究现状[J]. 茶叶, 2006(3): 133-135. |
JING T T, ZHONG Y F, YUAN L Y, ZHOU Z K. Research status of improving taste of summer and autumn green teas[J]. Journal of Tea, 2006(3): 133-135. (in Chinese) | |
[2] | 张亚楠. 黄金茶1号夏秋红茶加工技术及香味品质形成机理研究[D]. 长沙: 湖南农业大学, 2019. |
ZHANG Y N. Study on the processing technology and forming mechanism of aroma and taste quality of black tea of Huangjin 1 tea mading in summer and autumn[D]. Changsha: Hunan Agriculture University, 2019. (in Chinese) | |
[3] | 王雪萍, 龚自明. 夏秋季茶树遮阴效应研究进展[J]. 湖北农业科学, 2017, 56(23): 4447-4453. |
WANG X P, GONG Z M. Research progress of shading effect of tea in summer and autumn[J]. Hubei Agriculture science, 2017, 56(23): 4447-4453. (in Chinese) | |
[4] | 萧伟祥, 钟瑾, 萧慧, 蒋显猷. 茶红色素形成机理和制取[J]. 茶叶科学, 1997, 17(1): 1-5. |
XIAO W X, ZHONG J, XIAO H, JIANG X Y. Forming mechanism and preparation of tea red pigment[J]. Tea Science, 1997, 17(1): 1-5. (in Chinese) | |
[5] | 丁勇, 徐奕鼎, 王烨军, 张必桦, 苏有健. 祁门红茶初制中萎凋与初烘工艺研究[J]. 中国农学通报, 2010, 26(9): 110-114. |
DING Y, XU Y D, WANG Y J, ZHANG B H, SU Y J. Study on withering and first drying technology at primary processing of Keemun black tea[J]. Chinese Agricultural Science Bulletin, 2010, 26(9): 110-114. (in Chinese) | |
[6] | 陈昌辉, 杜晓, 齐桂年. 工夫红茶主要内含成分与品质的相关性分析[J]. 食品科技, 2011, 36(9): 83-87 |
CHEN C H, DU X, QI G N. The relativity analysis between the main components of congou black tea and its quality[J]. Food Science and Technology, 2011, 36(9): 83-87. (in Chinese)
DOI URL |
|
[7] | 雷攀登, 周汉琛, 吴琼, 张颖彬, 胡善国, 徐亦鼎, 丁勇, 黄建琴. 做青工艺对夏季祁门红茶品质形成影响[J]. 食品工业科技, 2017(8): 108-112. |
LEI P D, ZHOU H C, WU Q, ZHANG Y B, HU S G, XU Y D, DING Y, HUANG J Q. Effect of green-making technique on the quality of summer Keemun black tea[J]. Science and Technology of Food Industry, 2017(8): 108-112. (in Chinese) | |
[8] | 朱琳琳. 夏秋红茶新工艺研究[D]. 武汉: 华中农业大学, 2015. |
ZHU L L. Study on the new technology of summer and fall black tea[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese) | |
[9] | 刘淑娟, 钟兴刚, 粟本文, 李彦, 谭正初. 引进晒青、 摇青工艺降低夏秋红茶苦涩味的研究[J]. 江西农业学报, 2014, 26(6): 102-105. |
LIU S J, ZHONG X G, SU B W, LI Y, TAN Z C. Study on reducing bitter and astringency taste of black tea made in autumn by introducing sunning and greed-leaf-rocking technologies[J]. Acta Agriculture Jiangxi, 2014, 26(6): 102-105. (in Chinese) | |
[10] | 中华全国供销合作总社杭州茶叶研究院.茶磨碎试样的制备及其干物质含量测定: GB/T 8303—2002[S]. 北京: 中国标准出版社, 2002. |
Hangzhou Tea Research Institute, China COOP. Tea- preparation of ground sample and determination of dry matter content: GB/T 8303—2002[S]. Beijing: China Standards Press, 2002. (in Chinese) | |
[11] | 中华全国供销合作总社杭州茶叶研究院.茶叶中茶多酚和儿茶素类含量的检测方法: GB/T 8313—2008[S]. 北京: 中国标准出版社, 2008. |
Hangzhou Tea Research Institute, China COOP.Determination of total polyphenols of catechins content in tea: GB/T 8313—2008[S]. Beijing: China Standards Press, 2008. (in Chinese) | |
[12] | 中华全国供销合作总社杭州茶叶研究院.茶游离氨基酸总量的测定: GB/T 8314—2002[S]. 北京: 中国标准出版社, 2002. |
Hangzhou Tea Research Institute, China COOP.Tea- determination of free amino acids content: GB/T 8314—2002[S]. Beijing: China Standards Press, 2002. (in Chinese) | |
[13] | 中华全国供销合作总社杭州茶叶研究院.茶水浸出物测定: GB/T 8305—2002[S]. 北京: 中国标准出版社, 2002. |
Hangzhou Tea Research Institute, China COOP.Tea- determination of water extracts content: GB/T 8305— 2002[S]. Beijing: China Standards Press, 2002. (in Chinese) | |
[14] | 中华全国供销合作总社杭州茶叶研究院.茶咖啡碱测定: GB/T 8312—2002[S]. 北京: 中国标准出版社, 2002. |
Hangzhou Tea Research Institute, China COOP.Tea- determination of caffeine content: GB/T 8312 — 2002[S]. Beijing: China Standards Press, 2002. (in Chinese) | |
[15] | 黄意欢, 叶银芳. 茶学实验技术[M]. 北京: 中国农业出版社, 1997: 111-113. |
HUANG Y H, YE Y F. Experimental technology of tea[M]. Beijing: China Agricultural Press, 1997: 111-113. (in Chinese) | |
[16] | 张正竹. 茶叶生物化学实验教程[M]. 北京: 中国农业出版社, 2009: 52-54. |
ZHANG Z Z. Experimental course of tea biochemistry[M]. Beijing: China Agricultural Press, 2009: 52-54. (in Chinese) | |
[17] | 黄晨. 茶树多酚氧化酶基因的克隆及其对胁迫的响应[D]. 南京: 南京农业大学, 2018. |
HUANG C. Clonging of polyphenol oxidase from tea plant (Camellia sinensis) and its response to stress[D]. Nanjing: Nanjing Agriculture University, 2018. (in Chinese) | |
[18] | 马青平. 基于多组学分析的茶树白化机制研究[D]. 南京: 南京农业大学, 2019. |
MA Q P. Albino mechanism of tea plant based on multi- omics analysis[D]. Nanjing: Nanjing Agriculture University, 2019. (in Chinese) | |
[19] | 武广珩, 谢其婷, 吕橄, 林志銮, 王飞权, 任宇红, 张传海. 武夷岩茶香气相关酶基因表达差异分析[J]. 石河子大学学报(自然科学版), 2019, 37(6): 747-751. |
WU G H, XIE Q T, LYU G, LIN Z L, WANG F Q, REN Y H, ZHANG C H. Differential analysis of aroma-related enzyme gene expression in Wuyi rock tea[J]. Journal of Shihezi University (Natural Science), 2019, 37(6): 747-751. (in Chinese) | |
[20] | HO C T, LIN J K, SHAHIDI F. Tea and tea products: chemistry and health-promoting properties[M]. Florida: CRC Press, 2008. |
[21] | 刘亚芹, 周汉琛, 王辉, 胡善国, 黄建琴, 雷攀登, 李明智, 李诗涵. 红茶加工过程中纤维素酶和主要品质成分的动态变化[J]. 食品工业科技, 2020, 41(6): 66-70. |
LIU Y Q, ZHOU H C, WANG H, HU S G, HUANG J Q, LEI P D, LI M Z, LI S H. Dynamic changes of cellulase and main quality components in processing of black tea[J]. Science and Technology of Food Industry, 2020, 41(6): 66-70. (in Chinese) | |
[22] | 方骏婷. 祁门红茶加工过程中主化学成分分析[D]. 合肥: 安徽农业大学, 2016. |
FAN J T. Analysis on metabolic chemical composition of Keemun black tea in processing[D]. Hefei: Anhui Agriculture University, 2016. (in Chinese) | |
[23] | 薄佳慧, 宫连瑾, 叶兴妹, 吕智栋, 李谨, 骆伟明, 黎娜, 肖力争. 金花白茶加工过程中主要滋味物质的动态变化[J]. 现代食品科技, 2022, 38(1): 1-10. |
BO J H, GONG L J, YE X M, LYU Z D, LI J, LUO W M, LI N, XIAO L Z. Dynamic changes of main quality components in Jinhua white tea processing[J]. Modern Food Science and Technology, 2022, 38(1): 1-10. (in Chinese) | |
[24] | 王小云, 谭少波. 广西六垌野生工夫红茶加工过程中生化成分及香气成分变化趋势分析[J]. 南方农业学报, 2017, 48(4) :710-715. |
WANG X Y, TAN S B. Biochemical components and aroma components variation of Liudong wild Kungfu black tea in Guangxi during processing[J]. Journal of Southern Agriculture, 2017, 48(4): 710-715. (in Chinese) | |
[25] | 李会娟. 茶树CsPRXs在干旱胁迫和红茶加工中的表达分析[D]. 南京: 南京农业大学, 2019. |
LI H J. The expression analysis of CsPRXs (Camellia sinensis) in drought stress and black tea processing[D]. Nanjing: Nanjing Agriculture University, 2019. (in Chinese) | |
[26] | 邹纯, 尹军峰. 多酚氧化酶的性质及其在茶叶加工中的研究进展[J]. 中国茶叶, 2021, 43(6): 1-6. |
ZOU C, YIN J F. The properties of polyphenol oxidase and its research progress in tea processing[J]. China Tea, 2021, 43(6): 1-6. (in Chinese) | |
[27] | 刘敏. 茶主要涩味物质代谢相关基因的差异表达分析[D]. 扬州: 扬州大学, 2015. |
LIU M. Changes in the expression of genes related to the biosynthesis of catechins in tea plants (Camellia sinensis L.)[D]. Yangzhou: Yangzhou University, 2015. (in Chinese) | |
[28] | 单育. 茶树酚类物质的生物合成及关联合成酶基因的差异表达[D]. 合肥: 安徽农业大学, 2011. |
SHAN Y. Differential expression of relative genes in tea plant [Camellia sinensis (L.)O. Kuntze][D]. Hefei: Anhui Agriculture University, 2011. (in Chinese) | |
[29] | 陈静. 白茶萎凋过程差异基因的分离与儿茶素类物质代谢关键酶基因的表达分析[D]. 福州: 福建农林大学, 2017. |
CHEN J. Isolation of differentially expressed genes in processing of withering and expression analysis of genes encoding key enzymes in pathways of carechins metabolism in white tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017. (in Chinese) | |
[30] | 何加兴, 欧伊伶, 宋加艳, 肖力争. 黄金茶1号夏秋乌龙茶加工过程化学成分变化与品质形成分析[J]. 食品工业科技, 2020, 41(18): 223-230. |
HE J X, OU Y L, SONG J Y, XIAO L Z. Analysis of chemical components changes and quality formation of Huangjincha 1 summer Oolong tea during processing[J]. Science and Technology of Food Industry, 2020, 41(18): 223-230. (in Chinese) | |
[31] | 宛晚春. 茶叶生物化学[M]. 北京: 中国农业出版社, 2003: 451. |
WAN X C. Tea biochemistry[M]. Beijing: China Agriculture Press, 2003: 451. (in Chinese) | |
[32] | 廖珺. 摊放(萎凋) 技术对茶鲜叶游离氨基酸影响的研究进展[J]. 氨基酸和生物资源, 2016(4): 15-19. |
LIAO J. Research progress of the influence of spreading or withering technology on free amino acids of fresh tea leaves[J]. Amino Acids & Biotic Resources, 2016, 38(4): 15-19. (in Chinese) | |
[33] | BOKUCHAVA M A. 制茶工艺学与生物化学[M]. 杭州: 中国农业科学院茶叶研究所情报资料研究室, 1982: 73-78. |
BOKUCHAVA M A. Tea making technology and biochemistry[M]. Hangzhou: Information Research Office of Tea Research Institute, Chinese Academy of Agricultural Sciences, 1982: 73-78. (in Chinese) | |
[34] | 竹尾忠一. 红茶制造中多酚氧化酶活性变化研究[M]. 长沙: 湖南农学院科技情报资料室, 1973(3): 99-102. |
ZHU W Z Y. Changes of polyphenol oxidase activity in black tea production[M]. Changsha: Science and Technology Information Office of Hunan Agricultural University, 1973(3): 99-102. (in Chinese) | |
[35] | 阮宇成. 红碎茶制造过程中多酚氧化醉活性及同工酶的变化[M]. 杭州: 中国农业科学院茶叶研究所, 1981: 209-210. |
RUAN Y C. Changes of oxidative intoxication activity and Isozyme of polyphenols during the manufacture of broken black tea[M]. Hangzhou: Tea Research Institute, Chinese Academy of Agricultural Sciences, 1981: 209-210. (in Chinese) | |
[36] | 刘仲华, 黄建安. 茶叶中多酚氧化酶研究进展[J]. 茶叶科学简报, 1988(4): 1-6. |
LIU Z H, HUANG J A. Research progress of polyphenol oxidase in tea[J]. Tea Science Bulletin, 1988(4): 1-6. (in Chinese) | |
[37] | TAKEO T. Tea leaf polyphenol oxidase: Part III. Studies on the changes of polyphenol oxidase activity during black tea manufacture[J]. Agricultural and Biological Chemistry, 1966, 30(6): 529-535. |
[38] | 赵丽萍, 陈亮, 王新超, 姚明哲. 茶树新梢不同叶片中β-葡萄糖苷酶和β-樱草糖苷酶基因表达的实时定量PCR分析[J]. 茶叶科学, 2006, 26(1): 11-16. |
ZHAO L P, CHEN L, WANG X C, YAO M Z. Quantitative detection of β-glucosidase and β-primeverosidase gene expressions in different leaves of tea plant (Camellia sinensis) by real-time PCR analysis[J]. Journal of Tea Science, 2006, 26(1): 11-16. (in Chinese) |
[1] | HUANG Fan, TANG Xiaobo, ZHANG Cheng, LUO Fan, YE Yulong. Effect of Different Light Quality on White Peony Teas During Withering Process [J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1735-1744. |
[2] | TAN Xiaoqin, LI Wei, WANG Congming, HUANG Jiacheng, YANG Yang, TANG Qian. Seasonal Changes of Anthocyanins and Main Biochemical Components in ‘Ziyan’ and ‘Zijuan’ Tea Plants [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 168-174. |
[3] | WANG Feiquan,FENG Hua,ZHU Xiaoyan,LI Shaohua,ZHANG Jianming,ZHANG Bo,DU Hong,CHEN Rongbing. Effects of Rolling and Rocking Green on the Sensory Quality and Biochemical Components of White Tea [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2236-2245. |
[4] | ZHOU Zhe, SUN Weijiang, TANG Xiuhua, CHEN Zhidan, . The Analysis of Main Biochemical Components of Purple Shoots of Tea Plant in Different Seasons [J]. Chinese Journal of Tropical Crops, 2018, 39(5): 888-893. |
[5] | YAN Hongbo LI Guiqin , SONG Yawei , MENG Yuyu , WANG Yunsong , GUAN Junfeng . Comparative Genomics Analysis of the Polyphenol Oxidase Genes Among Five Rosaceae Species#br# [J]. Chinese Journal of Tropical Crops, 2017, 38(2): 320-327. |
[6] | CHEN Yiliang LU Leian MO Cehui CAI Quanying. Effects of DEHP Stress on Antioxidant Enzyme System of Rice(Oryza sativa L.)Cultivars with High-and Low-PAE Accumulation [J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1484-1488. |
[7] | CHEN Jiao SUN Changjun YANG Zhao WANG Chaozheng LI Yixing LI Fenfang YUAN Debao TAN Lin CHOU Houyuan CHEN Wenxue JIN Zhiqiang. Prokaryotic Expression of Polyphenol Oxidase Mature Protein from Banana(Musa acuminate) [J]. Chinese Journal of Tropical Crops, 2015, 36(12): 2198-2203. |
[8] | RONG Xia LAI Zhongxiong LIN Yuling LIU Shengcai LAI Gongti CHEN Yukun ZHANG Zihao. Cloning and Expression of Polyphenol Oxidase(PPO)Gene During Different Process of Preservation in in vitro Chinese Olive(Canarium album) [J]. Chinese Journal of Tropical Crops, 2014, 35(4): 738-745. |
[9] | XIE Qian CHEN Qingxi WANG wei YE Ling HUANG Lina YUAN Yafang. Enzymatic Activify of Peroxidase and Polyphenol Oxidase in Chinese Olive Fruit [J]. Chinese Journal of Tropical Crops, 2013, 34(8): 1519-1524. |
[10] | SHI Minjing DENG Shunnan CHEN Yueyi TIAN Weimin. The Enzymatic Activity and its Effect on Rubber Particle Aggregation of Polyphenol Oxidase from Lutoid of Latex in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2013, 34(10): 1966-1971. |
[11] | CHEN Ruiqin LIU Baohua WANG Guo WANG Lingyun ZHANG Xinchun LI Huanling WANG Jiabao. Relation between Polyphenol Oxidase and Postharvest Pericarp Browning in Different Litchi Cultivars [J]. Chinese Journal of Tropical Crops, 2012, 33(7): 1261-1266. |
[12] | Song Xiaojun , Chen Qing Qin Weiquan , Tang Chao Jin Qi'an Wen Haibo , Peng Zhenqiang. Effect of Parasitism by Asecodes hispinarum on the Activity of some Enzymes in larvae of Brontispa longissima [J]. Chinese Journal of Tropical Crops, 2009, 30(5): 699-703. |
[13] | Que Youxiong, Xu Liping, Xu Jingsheng, Zhang Jisen, Zhang Muqing, Chen Rukai. Selection of Control Genes in Real-time qPCR Analysis of Gene Expression in Sugarcane [J]. Chinese Journal of Tropical Crops, 2009, 30(3): 274-278. |
[14] | Lu Minquan, Wang Jiabao, Chu Zhong, Zhao Jiaju. Isoenzymatic Analysis of Several Species of Annona (Annona spp.) [J]. Chinese Journal of Tropical Crops, 2009, 30(1): 37-41. |
[15] | Chen Qing Zhang Yindong. Correlation of Oxidases with the Resistance of Capsicum Cultivars to Myzus persicae [J]. Chinese Journal of Tropical Crops, 2004, 25(3): 42-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||