Chinese Journal of Tropical Crops ›› 2022, Vol. 43 ›› Issue (10): 2122-2131.DOI: 10.3969/j.issn.1000-2561.2022.10.019
• Post-harvest Treatment & Quality Safety • Previous Articles Next Articles
DU Jiao1,2, DONG Wenjiang2,5,*(), CHENG Jinhuan3,*(
), HE Hongyan3, CHEN Gang4, CHEN Jianfei4, CHEN Xiaoai2,5, LONG Yuzhou2, HUANG Jiaxiong3
Received:
2022-03-07
Revised:
2022-04-20
Online:
2022-10-25
Published:
2022-11-04
Contact:
DONG Wenjiang,CHENG Jinhuan
CLC Number:
DU Jiao, DONG Wenjiang, CHENG Jinhuan, HE Hongyan, CHEN Gang, CHEN Jianfei, CHEN Xiaoai, LONG Yuzhou, HUANG Jiaxiong. Optimization of Ultrasonic-assisted Cold Extraction Process for Coffee Liquor Preparation and Its Physicochemical Characteristics[J]. Chinese Journal of Tropical Crops, 2022, 43(10): 2122-2131.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2022.10.019
因素Factor | 代码Code | 水平Level | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
超声功率/W | A | 300 | 400 | 500 |
超声温度/℃ | B | 15 | 20 | 25 |
超声时间/min | C | 30 | 40 | 50 |
Tab. 1 Level of response surface factors
因素Factor | 代码Code | 水平Level | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
超声功率/W | A | 300 | 400 | 500 |
超声温度/℃ | B | 15 | 20 | 25 |
超声时间/min | C | 30 | 40 | 50 |
Fig. 1 Effect of ultrasonic power on the extraction yield of total soluble solids in coffee samples Different lowercase letters indicate significant difference among treatments (P<0.05).
Fig. 2 Effect of ultrasonic temperature on the extraction yield of total soluble solids in coffee samples Different lowercase letters indicate significant difference among treatments (P<0.05).
Fig. 3 Effect of ultrasonic time on the extraction yield of total soluble solids in coffee samples Different lowercase letters indicate significant difference among treatments (P<0.05).
序号 Number | A | B | C | 提取率 Extraction rate/% |
---|---|---|---|---|
1 | 300.00(-1) | 15.00(-1) | 40.00(0) | 19.57±0.31 |
2 | 400.00(0) | 25.00(1) | 30.00(-1) | 21.72±0.10 |
3 | 400.00(0) | 20.00(0) | 40.00(0) | 22.18±0.11 |
4 | 500.00(1) | 20.00(0) | 30.00(-1) | 22.57±0.54 |
5 | 400.00(0) | 15.00(-1) | 50.00(1) | 21.99±0.12 |
6 | 400.00(0) | 20.00(0) | 40.00(0) | 22.33±0.18 |
7 | 400.00(0) | 20.00(0) | 40.00(0) | 22.55±0.12 |
8 | 500.00(1) | 20.00(0) | 50.00(1) | 21.97±0.45 |
9 | 500.00(1) | 25.00(1) | 40.00(0) | 22.71±0.18 |
10 | 300.00(-1) | 20.00(0) | 30.00(-1) | 19.23±0.44 |
11 | 300.00(-1) | 20.00(0) | 50.00(1) | 21.09±0.27 |
12 | 300.00(-1) | 25.00(1) | 40.00(0) | 20.78±0.16 |
13 | 400.00(0) | 20.00(0) | 40.00(0) | 22.72±0.10 |
14 | 400.00(0) | 20.00(0) | 40.00(0) | 22.05±0.20 |
15 | 500.00(1) | 15.00(-1) | 40.00(0) | 22.57±1.00 |
16 | 400.00(0) | 15.00(-1) | 30.00(-1) | 20.95±0.53 |
17 | 400.00(0) | 25.00(1) | 50.00(1) | 22.09±0.81 |
Tab. 2 Response surface experimental design and result
序号 Number | A | B | C | 提取率 Extraction rate/% |
---|---|---|---|---|
1 | 300.00(-1) | 15.00(-1) | 40.00(0) | 19.57±0.31 |
2 | 400.00(0) | 25.00(1) | 30.00(-1) | 21.72±0.10 |
3 | 400.00(0) | 20.00(0) | 40.00(0) | 22.18±0.11 |
4 | 500.00(1) | 20.00(0) | 30.00(-1) | 22.57±0.54 |
5 | 400.00(0) | 15.00(-1) | 50.00(1) | 21.99±0.12 |
6 | 400.00(0) | 20.00(0) | 40.00(0) | 22.33±0.18 |
7 | 400.00(0) | 20.00(0) | 40.00(0) | 22.55±0.12 |
8 | 500.00(1) | 20.00(0) | 50.00(1) | 21.97±0.45 |
9 | 500.00(1) | 25.00(1) | 40.00(0) | 22.71±0.18 |
10 | 300.00(-1) | 20.00(0) | 30.00(-1) | 19.23±0.44 |
11 | 300.00(-1) | 20.00(0) | 50.00(1) | 21.09±0.27 |
12 | 300.00(-1) | 25.00(1) | 40.00(0) | 20.78±0.16 |
13 | 400.00(0) | 20.00(0) | 40.00(0) | 22.72±0.10 |
14 | 400.00(0) | 20.00(0) | 40.00(0) | 22.05±0.20 |
15 | 500.00(1) | 15.00(-1) | 40.00(0) | 22.57±1.00 |
16 | 400.00(0) | 15.00(-1) | 30.00(-1) | 20.95±0.53 |
17 | 400.00(0) | 25.00(1) | 50.00(1) | 22.09±0.81 |
来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Signification |
---|---|---|---|---|---|---|
模型 | 17.38 | 9 | 1.93 | 34.71 | <0.0001 | ** |
A-超声功率 | 10.47 | 1 | 10.47 | 188.06 | <0.0001 | ** |
B-超声温度 | 0.62 | 1 | 0.62 | 11.07 | 0.0126 | * |
C-超声时间 | 0.89 | 1 | 0.89 | 16.01 | 0.0052 | ** |
AB | 0.29 | 1 | 0.29 | 5.14 | 0.0577 | |
AC | 1.51 | 1 | 1.51 | 27.19 | 0.0012 | ** |
BC | 0.11 | 1 | 0.11 | 2.02 | 0.1986 | |
A2 | 2.16 | 1 | 2.16 | 38.73 | 0.0004 | ** |
B2 | 0.25 | 1 | 0.25 | 4.47 | 0.0724 | |
C2 | 0.80 | 1 | 0.80 | 14.35 | 0.0068 | ** |
残差 | 0.39 | 7 | 0.056 | |||
失拟项 | 0.095 | 3 | 0.032 | 0.43 | 0.7443 | |
纯误差 | 0.29 | 4 | 0.074 | |||
总和 | 17.77 | 16 | ||||
R2=0.9781 | R2Aaj=0.9499 |
Tab. 3 Analysis of variance for response surface
来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Signification |
---|---|---|---|---|---|---|
模型 | 17.38 | 9 | 1.93 | 34.71 | <0.0001 | ** |
A-超声功率 | 10.47 | 1 | 10.47 | 188.06 | <0.0001 | ** |
B-超声温度 | 0.62 | 1 | 0.62 | 11.07 | 0.0126 | * |
C-超声时间 | 0.89 | 1 | 0.89 | 16.01 | 0.0052 | ** |
AB | 0.29 | 1 | 0.29 | 5.14 | 0.0577 | |
AC | 1.51 | 1 | 1.51 | 27.19 | 0.0012 | ** |
BC | 0.11 | 1 | 0.11 | 2.02 | 0.1986 | |
A2 | 2.16 | 1 | 2.16 | 38.73 | 0.0004 | ** |
B2 | 0.25 | 1 | 0.25 | 4.47 | 0.0724 | |
C2 | 0.80 | 1 | 0.80 | 14.35 | 0.0068 | ** |
残差 | 0.39 | 7 | 0.056 | |||
失拟项 | 0.095 | 3 | 0.032 | 0.43 | 0.7443 | |
纯误差 | 0.29 | 4 | 0.074 | |||
总和 | 17.77 | 16 | ||||
R2=0.9781 | R2Aaj=0.9499 |
指标 Index | 超声冷萃1 UCE1 | 超声冷萃2 UCE2 | 超声冷萃3 UCE3 | 传统冷浸 TCE |
---|---|---|---|---|
pH | 5.79±0.06a | 5.76±0.03a | 5.80±0.04a | 5.73±0.03a |
TA | 1.48±0.04a | 1.45±0.00ba | 1.38±0.04b | 1.43±0.04ba |
总固形物/% | 2.60±0.02a | 2.50±0.14a | 2.60±0.00a | 2.20±0.02b |
提取时间/min | 40 | 40 | 35 | 540 |
提取率/% | 22.71±0.18b | 22.72±0.10b | 22.92±0.16a | 18.41±0.28c |
Tab. 4 Physical and chemical indexes of coffee liquor under different extraction conditions
指标 Index | 超声冷萃1 UCE1 | 超声冷萃2 UCE2 | 超声冷萃3 UCE3 | 传统冷浸 TCE |
---|---|---|---|---|
pH | 5.79±0.06a | 5.76±0.03a | 5.80±0.04a | 5.73±0.03a |
TA | 1.48±0.04a | 1.45±0.00ba | 1.38±0.04b | 1.43±0.04ba |
总固形物/% | 2.60±0.02a | 2.50±0.14a | 2.60±0.00a | 2.20±0.02b |
提取时间/min | 40 | 40 | 35 | 540 |
提取率/% | 22.71±0.18b | 22.72±0.10b | 22.92±0.16a | 18.41±0.28c |
生物活性 物质 Active mass | 超声冷萃1 UCE1 | 超声冷萃2 UCE2 | 超声冷萃3 UCE3 | 传统冷浸 TCE |
---|---|---|---|---|
葫芦巴碱 | 180.35±13.60a | 173.43±0.20ab | 171.79±0.13ab | 158.77±3.36b |
咖啡因 | 317.22±6.24a | 320.35±0.67a | 315.56±6.98a | 289.34±0.26b |
3-CQA | 60.60±0.15c | 61.14±0.13b | 61.49±0.13a | 55.46±0.08d |
5-CQA | 130.82±1.23a | 130.72±0.08a | 130.77±0.27a | 116.95±0.06b |
4-CQA | 65.25±2.10a | 66.26±0.04a | 66.41±0.09a | 59.89±0.05b |
Tab. 5 Contents of alkaloids and chlorogenic acid in coffee liquor under different extraction conditions mg/L
生物活性 物质 Active mass | 超声冷萃1 UCE1 | 超声冷萃2 UCE2 | 超声冷萃3 UCE3 | 传统冷浸 TCE |
---|---|---|---|---|
葫芦巴碱 | 180.35±13.60a | 173.43±0.20ab | 171.79±0.13ab | 158.77±3.36b |
咖啡因 | 317.22±6.24a | 320.35±0.67a | 315.56±6.98a | 289.34±0.26b |
3-CQA | 60.60±0.15c | 61.14±0.13b | 61.49±0.13a | 55.46±0.08d |
5-CQA | 130.82±1.23a | 130.72±0.08a | 130.77±0.27a | 116.95±0.06b |
4-CQA | 65.25±2.10a | 66.26±0.04a | 66.41±0.09a | 59.89±0.05b |
[1] |
AKIYAMA M, MURAKAMI K, HIRANO Y, IKEDA M, IWABUCHI H. Characterization of headspace aroma compounds of freshly brewed arabica coffees and studies on a characteristic aroma compound of ethiopian coffee[J]. Journal of Food science, 2008, 73(5): 335-346.
DOI PMID |
[2] | 柏杰, 朱雨辰, 陈芳. 咖啡中丙烯酰胺的形成与控制研究进展[J]. 食品科学, 2022, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPKX2022012500O&uniplatform=NZKPT&v=sbig8z5V17xSAow8dJsn82dA9or_uhCbWBpgMlW4pkVkym9szREm28MFXwNhyC2b. |
BAI J, ZHU Y C, CHEN F. Research Progress on the formation and control of acrylamide in coffee[J]. Food science, 2022, https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=SPKX2022012500O&uniplatform=NZKPT&v=sbig8z5V17xSAow8dJsn82dA9or_uhCbWBpgMlW4pkVkym9szREm28MFXwNhyC2b. (in Chinese) | |
[3] | CHENG B, FURTADO A, SMYTH H E, HENRY R J. Influence of genotype and environment on coffee quality[J]. Trends in Food Science & Technology, 2016, 57: 20-30. |
[4] |
DANIELA M, CRISTIAN D B, MICHELE T, PATRIZIA R, DANIELE D R, FURIO B, MARISA P. Coffee consumption and oxidative stress: a review of human intervention studies[J]. Molecules, 2016, 21: 979.
DOI URL |
[5] |
ŞEMEN S, MERCAN S, YAYLA M, AÇıKKOL M. Elemental composition of green coffee and its contribution to dietary intake[J]. Food Chemistry, 2017, 215: 92-100.
DOI PMID |
[6] |
MORONEY K M, LEE W T, BRIEN S B G O, SUIJVER F, MARRA J. Asymptotic analysis of the dominant mechanisms in the coffee extraction process[J]. Siam Journal on Applied Mathematics, 2016, 76(6): 2196-2217.
DOI URL |
[7] |
ANGELONI G, GUERRINI L, MASELLA P, INNOCENTI M, BELLUMORI M, PARENTI A. Characterization and comparison of cold brew and cold drip coffee extraction methods[J]. Journal of the Science of Food and Agriculture, 2018, 99(1): 391-399.
DOI URL |
[8] |
RAO N Z, FULLER M, GRIM M D. Physiochemical characteristics of hot and cold brew coffee chemistry: the effects of roast level and brewing temperature on compound extraction[J]. Foods, 2020, 9(7): 902.
DOI URL |
[9] |
WANG X J, WILLIAM J, FU Y C, LIM L T. Effects of capsule parameters on coffee extraction in single-serve brewer[J]. Food Research International, 2016, 89: 797-805.
DOI PMID |
[10] |
MICHAIL A, SIGALA P, GRIGORAKIS S, MAKRIS D P. Kinetics of ultrasound-assisted polyphenol extraction from spent filter coffee using aqueous glycerol[J]. Chemical Engineering Communications, 2016, 203(3) : 407-413.
DOI URL |
[11] | WANG C C, SHEU S R, CHOU Y Y, JANG M J, YANG L C. A novel optimized energy-saving extraction process on coffee[J]. Thermal Science, 2011, 15(S1): S53-S59. |
[12] | WANG L, WELLER C L. Recent advances in extraction of nutraceuticals from plants[J]. Trends in Food Science & Technology, 2006, 17(6): 300-312. |
[13] |
AHMED M, JIANG G H, PARK J S, LEE K C, SEOK Y Y, EUN J B. Effects of ultrasonication, agitation and stirring extraction techniques on the physicochemical properties, health‐promoting phytochemicals and structure of cold‐brewed coffee[J]. Journal of the Science of Food and Agriculture, 2018, 99(1): 290-301.
DOI URL |
[14] |
MOHAMMAD H Z, BAILINA Y, ERNEST T, ADEL R, JAMES M H, MARTIN P B, DONALD S T, FRANCISCO J T. Brewing coffee? - Ultra-sonication has clear beneficial effects on the extraction of key volatile aroma components and triglycerides[J]. Ultrasonics Sonochemistry, 2020, 60: 104796.
DOI URL |
[15] |
AO N Z, FULLER M. Acidity and antioxidant activity of cold brew coffee[J]. Scientific Reports, 2018, 8: 16030.
DOI PMID |
[16] |
GLOESS A N, SCHÖNBÄCHLER B, KLOPPROGGE B, D AMBROSIO L, CHATELAIN K, BONGARTZ A, STRITTMATTER A, RAST M, YERETZIAN C. Comparison of nine common coffee extraction methods: instrumental and sensory analysis[J]. European Food Research and Technology, 2013, 236(4): 607-627.
DOI URL |
[17] | 于菲. 海南不同产地咖啡风味化学组成及品质研究[D]. 银川: 宁夏大学, 2021. |
YU F. Study on flavor chemical composition and quality of coffee from different producing areas in Hainan[D]. Yinchuan: Ningxia University, 2021. | |
[18] |
ZHANG Y, HU M, ZHU K, GANG W, TAN L. Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China[J]. International Journal of Biological Macromolecules, 2018, 107: 1395-1405.
DOI URL |
[19] | 魏晴, 梁珊珊, 孙庆文. 响应面法优化大果木姜子多糖提取工艺及抗氧化研究[J]. 食品研究与开发, 2021, 42(23): 41-46. |
WEI Q, LIANG S S, SUN Q W. Optimization of extraction process and antioxidation of polysaccharides from Litsea lancilimba by response surface methodology[J]. Food Research and Development, 2021, 42(23): 41-46. | |
[20] |
CÓRDOBA N, MORENO F L, OSORIO C, VELÁSQUEZ S, RUIZ Y. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods[J]. Food Research International, 2021, 141: 110141.
DOI URL |
[21] |
SODEIFIAN G, SAJADIAN S A, ARDESTANI N S. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri: application of simulated annealing (SA) algorithm[J]. The Journal of Supercritical Fluids, 2017, 127: 146-157.
DOI URL |
[22] |
BELLUMORI M, ANGELONI G, GUERRINI L, MASELLA P, INNOCENTI M. Effects of different stabilization techniques on the shelf life of the cold brew coffee: chemical composition, flavor profile and microbiological analysis[J]. LWT - Food Science and Technology, 2021, 142(77): 111043.
DOI URL |
[23] |
RAO N Z, FULLER M. Acidity and antioxidant activity of cold brew coffee[J]. Scientific Reports, 2018, 8: 16030.
DOI PMID |
[24] | CORDOBA N, FERNANDEZ-ALDUENDA M, MORENO F L, RUIZ Y. Coffee extraction: a review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews[J]. Trends in Food Science & Technology, 2020, 96: 45-60. |
[25] |
HECKMAN M A, WEIL J, MEJIA E G D. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters[J]. Journal of Food Science, 2010, 75(3): 77-87.
DOI PMID |
[26] | LUDWIG I A, CLIFFORD M N, LEAN M, ASHIHARA H, CROZIER A. Coffee: biochemistry and potential impact on health[J]. Food & Function, 2014, 5(8): 1695-1717. |
[27] |
ZAMANIPOOR M H, YAKUFU B, TSE E, REZAEIMOTLAGH A, HOOK J M, BUCKNALL M P, THOMAS D S, TRUJILLO F J. Brewing coffee? - Ultra-sonication has clear beneficial effects on the extraction of key volatile aroma components and triglycerides[J]. Ultrasonics Sonochemistry, 2020, 60: 104796.
DOI URL |
[28] | CAVIN C, HOLZHAEUSER D, SCHARF G, CONSTABLE A, HUBER W W, SCHILTER B. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity[J]. Food & Chemical Toxicology, 2002, 40(8): 1155-1163. |
[29] | 孙杨. 超声波辅助提取对绿茶提取液品质的影响[D]. 合肥: 安徽农业大学, 2015. |
SUN Y. Effect of ultrasonic assisted extraction on the quality of green tea extract[D]. Hefei: Anhui Agricultural University, 2015. | |
[30] |
CORDOBA N, PATAQUIVA L, OSORIO C, MORENO F L M, RUIZ R Y. Effect of grinding, extraction time and type of coffee on the physicochemical and flavour characteristics of cold brew coffee[J]. Scientific Reports, 2019, 9(1): 8440.
DOI PMID |
[31] |
ZOU Y, HOU X Y. Sonication enhances quality and antioxidant activity of blueberry juice[J]. Food Science and Technology, 2017, 37(4): 599-603.
DOI URL |
[32] |
FUJIOKA K, SHIBAMOTO T. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2006, 54(16): 6054-6058.
PMID |
[1] | WU Dongming, YIN Wenfang, SONG Yike, LI Qinfen, WU Chunyuan. Effects of Different Environmental Factors on Degradation of Paclobutrazol in Mango Plantation Soil in Hainan [J]. Chinese Journal of Tropical Crops, 2022, 43(6): 1305-1312. |
[2] | FAN Wujing, YANG Xin, WEI Yuheng, TANG Meili, HE Huyi, TANG Zhouping, LI Lishu. Effect of Organic-inorganic Compound Fertilizer on the Growth of Edible Canna and the Physical and Chemical Properties of Soil [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1981-1987. |
[3] | HUANG Zhenrui,CHEN Diwen,LI Jiqin,LI Shuling. Effects of Combined Application of Seaweed Residue and Magnesium on Physicochemical Properties of Red Soil and Tobacco Growth [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1797-1802. |
[4] | LI Jiqin,YANG Shaohai,HUANG Zhenrui,LU Yusheng,GU Wenjie,LI Shuling. Application of Two Soil Conditioners in Alluvial Sandy Soil of Meizhou Tobacco-growing Area [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1596-1601. |
[5] | LUO Bailing,LIU Dunhua,DONG Wenjiang,HU Rongsuo,LONG Yuzhou,CHEN Zhihua,JIANG Kuaile. Effect of Ultrafine Grinding on Physicochemical Properties, Structure and Adsorption Capacity of Coffee Peel [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1219-1226. |
[6] | LI Kejie,LUO Bi,TANG Xiaomin,ZHOU Liangyun,YANG Quan,PAN Liming. Changes of Physicochemical Properties and Available Elements in Rhizosphere Soil under Different Intercropping Patterns of Citrus medica L. var. sarcodactylis Swingle [J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1865-1872. |
[7] | TU Xinghao,SUN Liqun,TANG Jinghua,ZHANG Ming,SHUAI Xixiang,CHEN Hong,DU Liqing. Optimization of Ultrasonic Assisted Extraction of Macadamia Oil and Its Physicochemical Properties [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2217-2226. |
[8] | LIU Jingkun,WU Songzhan,CHENG Hanting,LI Guangyi,LI Ye,WANG Jinchuang,LI Qinfen. Advances in Utilization of Spent Mushroom Substrates Plant Growing Medium [J]. Chinese Journal of Tropical Crops, 2019, 40(1): 191-198. |
[9] | LI Jing, CHEN Ruizhou, LAN Zihan, LIN Dian. Effect of Organic Fertilizer Substituting Part of Inorganic Fertilizer on Physical and Chemical Properties, Enzyme Activity and Fruit Nutrient of Garden Soil [J]. Chinese Journal of Tropical Crops, 2018, 39(4): 656-660. |
[10] | CHENG Ke , DONG Wenjiang , HU Rongsuo CHU Zhong , ZONG Ying , ZHAO Jianping. Effect of Microwave Vacuum Drying on Flavor Components of Coffee Beans [J]. Chinese Journal of Tropical Crops, 2018, 39(2): 380-391. |
[11] | CHEN Xinfan LIN Guowei HONG Tao CHEN Jianzhong SU Shaochuan HONG Wei WU Chengzhen LIN Han. Soil Physical and Chemical Properties of Cunninghamia lanceolata - Aleurites Montana Mixed Forestand Cunninghamia lanceolata Pure Forest with Different Age [J]. Chinese Journal of Tropical Crops, 2017, 38(9): 1660-1665. |
[12] | HAO Xiangyang LIANG Tianfeng WEI Shanqing JIANG Ligeng. Effects of Physical and Chemical Properties of Rice Seedling Substrate on Seedling Quality [J]. Chinese Journal of Tropical Crops, 2017, 38(6): 1064-1068. |
[13] | ZHENG Bingxin LIU Yunyun ZHENG Baodong. Optimization of Preparation Technology of Purple Sweet Potato Starches Modified by Dry Heating Method [J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1601-1608. |
[14] | YANG Jingyuan DONG Wenjiang LU Minquan HU Rongsuo ZHAO Jianping. Research on Characteristics and Volatiles Changes During Hot-air Drying of Green Coffee Beans [J]. Chinese Journal of Tropical Crops, 2016, 37(5): 971-978. |
[15] | SHAN Zhongying LUO Xinglu FAN Wujing MO Fan. Effects of Different Irrigation Amount and Methods on the Physical and Chemical Properties of Soil and the Growth of Cassava [J]. Chinese Journal of Tropical Crops, 2016, 37(3): 493-496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||