Chinese Journal of Tropical Crops ›› 2021, Vol. 42 ›› Issue (10): 3033-3041.DOI: 10.3969/j.issn.1000-2561.2021.10.038
• Agricultural Ecology & Environmental Protection • Previous Articles Next Articles
LU Jianming, HUANG Xiaolong, WU Wenqiang, XU Yun, XIA Wei, ZHANG Rongping*()
Received:
2020-12-15
Revised:
2021-02-15
Online:
2021-10-25
Published:
2021-11-25
Contact:
ZHANG Rongping
CLC Number:
LU Jianming, HUANG Xiaolong, WU Wenqiang, XU Yun, XIA Wei, ZHANG Rongping. Effect of Streptomyces and Chitosan on the Soil Microbial Activities and Microbiome in Dioscorea oppositifolia L.[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 3033-3041.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2021.10.038
因素Factors | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
土壤原始微生物 | 1(自然土) | 0(无菌土) | |||
培养时间/d | 7 | 21 | 140 | ||
链霉菌 /(106 CFU·g?1) | 0 | 1 | |||
壳聚糖/(g·kg?1) | 0.00 | 0.25 | 1.00 | 2.50 | 10.00 |
Tab. 1 Experiment design
因素Factors | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
土壤原始微生物 | 1(自然土) | 0(无菌土) | |||
培养时间/d | 7 | 21 | 140 | ||
链霉菌 /(106 CFU·g?1) | 0 | 1 | |||
壳聚糖/(g·kg?1) | 0.00 | 0.25 | 1.00 | 2.50 | 10.00 |
因素 Factors | 水平 Levels | 脲酶活性 Urease activity /(mg·g?1·d?1) | 过氧化氢酶活性 Catalase activity /(mL·g?1) |
---|---|---|---|
土壤微生物 | 1 | 0.54±0.25A | 2.64±0.20A |
0 | 0.24±0.11C | 2.14±0.28B | |
壳聚糖/(g·kg?1) | 0.00 | 0.33±0.19C | 2.33±0.30B |
0.25 | 0.35±0.22C | 2.31±0.32B | |
1.00 | 0.39±0.27B | 2.32±0.32B | |
2.50 | 0.43±0.26AB | 2.42±0.37B | |
10.00 | 0.45±0.26A | 2.55±0.39A | |
链霉菌 /(106 CFU·g?1) | 0.00 | 0.38±0.25B | 2.36±0.38a |
1.00 | 0.41±0.24A | 2.41±0.31a | |
培育时间/d | 7 | 0.24±0.07C | 2.35±0.40B |
21 | 0.56±0.31A | 2.50±0.37A | |
140 | 0.37±0.16B | 2.31±0.24B |
Tab. 2 Effects of Streptomyces and chitosan on soil enzyme activity in D. oppositifolia L.
因素 Factors | 水平 Levels | 脲酶活性 Urease activity /(mg·g?1·d?1) | 过氧化氢酶活性 Catalase activity /(mL·g?1) |
---|---|---|---|
土壤微生物 | 1 | 0.54±0.25A | 2.64±0.20A |
0 | 0.24±0.11C | 2.14±0.28B | |
壳聚糖/(g·kg?1) | 0.00 | 0.33±0.19C | 2.33±0.30B |
0.25 | 0.35±0.22C | 2.31±0.32B | |
1.00 | 0.39±0.27B | 2.32±0.32B | |
2.50 | 0.43±0.26AB | 2.42±0.37B | |
10.00 | 0.45±0.26A | 2.55±0.39A | |
链霉菌 /(106 CFU·g?1) | 0.00 | 0.38±0.25B | 2.36±0.38a |
1.00 | 0.41±0.24A | 2.41±0.31a | |
培育时间/d | 7 | 0.24±0.07C | 2.35±0.40B |
21 | 0.56±0.31A | 2.50±0.37A | |
140 | 0.37±0.16B | 2.31±0.24B |
变异来源 Variation source | 平方和Sum of square | 均方差Mean square | F值F value | P值P value | ||||
---|---|---|---|---|---|---|---|---|
脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | 脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | 脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | 脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | |
培养时间 | 4.73 | 1.44 | 2.37 | 0.72 | 686.93 | 36.25 | <0.0001 | <0.0001 |
链霉菌 | 0.01 | 0.00 | 0.01 | 0.00 | 3.66 | 0.01 | 0.06 | 0.92 |
壳聚糖 | 0.17 | 0.56 | 0.04 | 0.14 | 12.27 | 7.11 | <0.0001 | <0.0001 |
时间×链霉菌 | 0.01 | 0.05 | 0.01 | 0.02 | 1.33 | 1.14 | 0.27 | 0.33 |
时间×壳聚糖 | 0.23 | 0.06 | 0.03 | 0.01 | 8.46 | 0.39 | <0.0001 | 0.92 |
链霉菌×壳聚糖 | 0.04 | 0.07 | 0.01 | 0.02 | 2.59 | 0.84 | 0.05 | 0.51 |
时间×链霉菌×壳聚糖 | 0.05 | 0.05 | 0.01 | 0.01 | 1.82 | 0.34 | 0.09 | 0.95 |
误差 | 0.20 | 1.15 | 0.00 | 0.02 | ||||
总和 | 5.46 | 3.39 |
Tab. 3 Interaction effect of effects of Streptomyces and chitosan on soil enzyme activity in D. oppositifolia L.
变异来源 Variation source | 平方和Sum of square | 均方差Mean square | F值F value | P值P value | ||||
---|---|---|---|---|---|---|---|---|
脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | 脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | 脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | 脲酶活性Urease activity | 过氧化氢酶活性Catalase activity | |
培养时间 | 4.73 | 1.44 | 2.37 | 0.72 | 686.93 | 36.25 | <0.0001 | <0.0001 |
链霉菌 | 0.01 | 0.00 | 0.01 | 0.00 | 3.66 | 0.01 | 0.06 | 0.92 |
壳聚糖 | 0.17 | 0.56 | 0.04 | 0.14 | 12.27 | 7.11 | <0.0001 | <0.0001 |
时间×链霉菌 | 0.01 | 0.05 | 0.01 | 0.02 | 1.33 | 1.14 | 0.27 | 0.33 |
时间×壳聚糖 | 0.23 | 0.06 | 0.03 | 0.01 | 8.46 | 0.39 | <0.0001 | 0.92 |
链霉菌×壳聚糖 | 0.04 | 0.07 | 0.01 | 0.02 | 2.59 | 0.84 | 0.05 | 0.51 |
时间×链霉菌×壳聚糖 | 0.05 | 0.05 | 0.01 | 0.01 | 1.82 | 0.34 | 0.09 | 0.95 |
误差 | 0.20 | 1.15 | 0.00 | 0.02 | ||||
总和 | 5.46 | 3.39 |
多样性指数 Diversity index | CK | LM | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|
Chao指数 | 510.36±31.29a | 515.94±4.55a | 508.31±30.16a | 501.99±18.59a | 540.41±58.64a | 481.64±38.53a |
Ace指数 | 502.54±43.68a | 504.70±13.84a | 503.60±31.05a | 495.93±28.07a | 527.52±48.43a | 479.08±38.97a |
Shannon指数 | 3.80±0.22ab | 4.22±0.20a | 3.54±0.28b | 3.90±0.45ab | 3.84±0.54ab | 3.86±0.14b |
Simpson指数 | 0.08±0.02a | 0.05±0.02a | 0.10±0.04a | 0.07±0.04a | 0.07±0.03a | 0.06±0.01a |
Tab. 4 Alpha diversity of soil fungus under treatment of Streptomyces and chitosan in D. oppositifolia L.
多样性指数 Diversity index | CK | LM | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|
Chao指数 | 510.36±31.29a | 515.94±4.55a | 508.31±30.16a | 501.99±18.59a | 540.41±58.64a | 481.64±38.53a |
Ace指数 | 502.54±43.68a | 504.70±13.84a | 503.60±31.05a | 495.93±28.07a | 527.52±48.43a | 479.08±38.97a |
Shannon指数 | 3.80±0.22ab | 4.22±0.20a | 3.54±0.28b | 3.90±0.45ab | 3.84±0.54ab | 3.86±0.14b |
Simpson指数 | 0.08±0.02a | 0.05±0.02a | 0.10±0.04a | 0.07±0.04a | 0.07±0.03a | 0.06±0.01a |
Fig. 1 Relative abundance of soil fungus after Streptomyces and chitosan treatment in D. oppositifolia L. CK was clean water, LM was Streptomyces suspension, F1 was Streptomyces + 0.25 g/kg chitosan, F2 was Streptomyces + 1.00 g/kg chitosan, F3 was Streptomyces +2.50 g/kg chitosan, and F4 was Streptomyces + 10.00 g/kg chitosan.
Fig. 2 Correlation network of soil fungus under treatment of Streptomyces and chitosan in D. oppositifolia L. The circle represents species, and the circle size represents abundance; the line indicates the correlation among species, the thickness of the line indicates the strength of the correlation, orange indicates the positive correlation, and green indicates the negative correlation.
多样性指数 Diversity index | CK | LM | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|
Ace指数 | 1506.48±7.59a | 1513.37±3.20a | 1516.55±4.26a | 1516.84±6.91a | 1516.40±7.58a | 1516.56±13.38a |
Chao指数 | 1509.94±11.83b | 1518.04±4.07ab | 1521.92±5.43ab | 1519.74±4.71ab | 1530.24±9.65a | 1514.37±14.94ab |
Shannon指数 | 6.39±0.01a | 6.32±0.05a | 5.58±0.90b | 5.01±0.44b | 5.12±0.57b | 5.16±0.31b |
Simpson指数 | 0.00±0.00a | 0.01±0.00a | 0.05±0.07a | 0.06±0.02a | 0.07±0.04a | 0.04±0.01a |
Tab. 5 Alpha diversity of soil bacteria under treatment of Streptomyces and chitosan in D. oppositifolia L.
多样性指数 Diversity index | CK | LM | F1 | F2 | F3 | F4 |
---|---|---|---|---|---|---|
Ace指数 | 1506.48±7.59a | 1513.37±3.20a | 1516.55±4.26a | 1516.84±6.91a | 1516.40±7.58a | 1516.56±13.38a |
Chao指数 | 1509.94±11.83b | 1518.04±4.07ab | 1521.92±5.43ab | 1519.74±4.71ab | 1530.24±9.65a | 1514.37±14.94ab |
Shannon指数 | 6.39±0.01a | 6.32±0.05a | 5.58±0.90b | 5.01±0.44b | 5.12±0.57b | 5.16±0.31b |
Simpson指数 | 0.00±0.00a | 0.01±0.00a | 0.05±0.07a | 0.06±0.02a | 0.07±0.04a | 0.04±0.01a |
Fig. 3 Relative abundance of soil bacteria after Streptomyces and chitosan treatment in D. oppositifolia L. CK was clean water, LM was Streptomyces suspension, F1 was Streptomyces + 0.25 g/kg chitosan, F2 was Streptomyces + 1.00 g/kg chitosan, F3 was Streptomyces +2.50 g/kg chitosan, and F4 was Streptomyces + 10.00 g/kg chitosan.
Fig. 4 Correlation network of soil bacteria under treatment of Streptomyces and chitosan in D. oppositifolia L. The circle represents species, and the circle size represents abundance; the line indicates the correlation among species, the thickness of the line indicates the strength of the correlation, orange indicates the positive correlation, and green indicates the negative correlation.
[1] | 汤洁, 戴兴临, 涂玉琴, 等. 淮山药高效栽培技术研究[J]. 安徽农业科学, 2017, 45(4):122-127. |
[2] | 李月仙, 黄东益, 黄小龙, 等. 山药的研究进展[J]. 中国农学通报, 2009, 25(9):91-96. |
[3] | 岑家兰, 王雪芳, 黎祖文, 等. 广西八步区淮山生产连作障碍的影响及解决措施[J]. 长江蔬菜, 2016(7):3-4. |
[4] | 陈伟益, 黄东益, 吴文嫱, 等. 壳聚糖及其衍生物对连作淮山炭疽病的影响[J]. 海南大学学报(自然科学版), 2020, 38(2):141-146. |
[5] | 邹莉, 袁晓颖, 李玲, 等. 连作对大豆根部土壤微生物的影响研究[J]. 微生物学杂志, 2005(2):27-30. |
[6] | 黄敏. 大田双孢蘑菇连作障碍的土壤微生物学特性研究[D]. 雅安: 四川农业大学, 2006. |
[7] | 黄小龙, 陈吉良, 李建平, 等. 热带药用植物根际放线菌的分离、鉴定及生物活性分析[J]. 生物技术通报, 2012(2):121-127. |
[8] | 王玉. 放线菌剂对连作番茄生理生态及土壤微环境的影响[D]. 杨凌: 西北农林科技大学, 2012. |
[9] | 马云艳, 徐万里, 唐光木, 等. 生防链霉菌配施棉秆炭对连作棉田土壤微生物区系的影响[J]. 中国生态农业学报, 2017, 25(3):400-409. |
[10] | 张炳欣, 张平, 陈晓斌. 影响引入微生物根部定殖的因素[J]. 应用生态学报, 2000(6):951-953. |
[11] | 丛子文, 焦敬华, 周双清, 等. 链霉菌30702的鉴定及其生防特性[J]. 生物技术通报, 2018, 34(6):190-198. |
[12] | 焦敬华. 山药炭疽病生防菌30702的生防特性及分类鉴定[D]. 海口: 海南大学, 2016. |
[13] | 焦敬华, 黄东益, 吴文嫱, 等. 山药炭疽病菌拮抗放线菌30702菌株的初步鉴定及发酵培养基优化[J]. 热带作物学报, 2016, 37(4):775-783. |
[14] |
Chien P J, Chou C C. Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata)[J]. Journal of the Science of Food and Agriculture, 2006, 86:1964-1969.
DOI URL |
[15] | 刘清玮, 宋宇鹏. 有机肥对三年生农田栽培人参根际微生态及产量的影响[J]. 吉林农业大学学报, 2020, 42(4):409-414. |
[16] |
Bol J F, Linthorst H, Cornelissen B. Plant pathogenesis-related proteins induced by virus infection[J]. Annual Review of Phytopathology, 1990, 28(1):113-138.
DOI URL |
[17] | 李宝英. 壳聚糖制剂控制蔬菜土传病害的研究[J]. 中国农学通报, 2005(1):275-277. |
[18] |
Yuan W M, Crawford D L. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots[J]. Applied and Environmental Microbiology, 1995, 61(8):3119-3128.
DOI PMID |
[19] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. |
[20] | 刘宇彤, 霍璐阳, 李志国, 等. 不同处理方式对土壤酶活性的影响[J]. 森林工程, 2019, 35(2):21-26. |
[21] | 曾宪军, 刘登魁, 朱世民, 等. 不同浓度阿特拉津对三种肥力条件土壤过氧化氢酶的影响[J]. 湖南农业科学, 2005(6):33-35. |
[22] | 尹淑丽, 麻耀华, 张丽萍, 等. 不同生防菌对黄瓜根际土壤微生物数量及土壤酶活性的影响[J]. 北方园艺, 2012(1):10-14. |
[23] | 王艳芳, 付风云, 李家家, 等. 甲壳素对连作条件下平邑甜茶幼苗生长及土壤环境的影响[J]. 生态学报, 2016, 36(19):6218-6225. |
[24] | 蔡燕飞, 廖宗文, 章家恩, 等. 生态有机肥对番茄青枯病及土壤微生物多样性的影响[J]. 应用生态学报, 2003(3):349-353. |
[25] | 章家恩, 廖宗文. 试论土壤的生态肥力及其培育[J]. 生态环境, 2004, 9(3):253-256. |
[26] | 杨红, 徐唱唱, 曹丽花, 等. 米林县不同种植年限蔬菜大棚土壤pH和无机氮变化特征研究[J]. 农业环境科学学报, 2016, 35(12):2397-2404. |
[27] |
Zhang J, Wang P C, Tian H M, et al. Pyrosequencing-based assessment of soil microbial community structure and analysis of soil properties with vegetable planted at different years under greenhouse conditions[J]. Soil and Tillage Research, 2019, 187:1-10.
DOI |
[28] |
Tripathi P, Khare P, Barnawal D, et al. Bioremediation of arsenic by soil methylating fungi: Role of Humicola sp. strain 2WS1 in amelioration of arsenic phytotoxicity in Bacopa monnieri L.[J]. Science of the Total Environment, 2020, 716:136758.
DOI URL |
[29] |
Ren J, Xue C, Tian L, et al. Asperelines A-F, peptaibols from the marine-derived fungus Trichoderma asperellum[J]. Journal of Natural Products, 2009, 72(6):1036-1044.
DOI URL |
[30] |
Luo Y, Zhou M, Zhao Q, et al. Complete genome sequence of Sphingomonas sp. Cra20, a drought resistant and plant growth promoting rhizobacteria[J]. Genomics, 2020, 112(5):3648-3657.
DOI URL |
[31] | 段亚冰. 牡丹叶斑病病原真菌鉴定及生物学特性研究[D]. 洛阳: 河南科技大学, 2009. |
[32] | Voets J P, Van Hove J K. Purification and cellulolytic activity of Cellvibrio[J]. Nature, 1953, 171(4363):1073-1074. |
[33] |
Gardner J G. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus[J]. World Journal of Microbiology and Biotechnology, 2016, 32(7):1-12.
DOI URL |
[34] | Voets J P, Van Hove J K. Purification and cellulolytic activity of Cellvibrio.[J]. Nature, 1953, 171(4363):1073-1074. |
[35] | 谭志远, 彭桂香, 徐培智, 等. 普通野生稻(Oryza rufipogon)内生固氮菌多样性及高固氮酶活性[J]. 科学通报, 2009, 54(13):1885-1893. |
[36] |
Phillips R P, Fahey T J. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects[J]. Ecology, 2006, 87(5):1302-1313.
PMID |
[37] | 马海宾, 翟婵婵, 王胜坤, 等. 不同分子量壳聚糖抑菌作用的研究[J]. 中国农学通报, 2014, 30(31):267-271. |
[38] | 陈红丽. 腐熟麦秸对植烟土壤的营养效应及其机理研究[D]. 郑州: 河南农业大学, 2013. |
[1] | GUO Xin,LIN Yuzhao,ZENG Lingzhen,LIN Jingying,YU Xingxing,LIN Hetong. Effects of Different Concentrations of Chitosan Treatment on Storability and Storage Quality of Passion Fruit Postharvest [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1665-1673. |
[2] | GUO Xin, LIN Yuzhao, DENG Liyan, TANG Jinyan, LIN Hetong. Effects of Chitosan Treatment on Reactive Oxygen Species Metabolism in Pericarp of Harvested Passion Fruit during Storage [J]. Chinese Journal of Tropical Crops, 2020, 41(12): 2526-2533. |
[3] | LIU Shanting,LUO Xinglu,WU Meiyan,TANG Zhiping,WANG Chaochao,ZHANG Jialing. Comparison of Cassava Yield and Soil Microbial Characteristics under Continuous Cropping and Rotation [J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1468-1473. |
[4] | HU Yiyu,FENG Chengtian,LIU Hui,YUAN Kun,XIE Guishui,WANG Zhenhui. Preparation Technology Optimization of Sodium Alginate / Chitosan Based Tapping Panel Dryness (TPD) Rehabilitation Nutrition Microcapsule in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2019, 40(7): 1379-1386. |
[5] | WANG Hui,YANG Ziming,HE Zuyu,ZHOU Chuang,WANG Chao,LI Puwang. Preparation and Physicochemical Properties of Amphiphilic Chitosan/ Quercetin nanomicelles [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 980-986. |
[6] | JI Ying,LIN Hetong,JIANG Xuanjing,HUANG Huaming,LI Na,XIAO Yanyun. Effects of Different Concentrations of Chitosan Treatment on Quality Attributes and Storage Behavior of Harvested ‘Jianyang Tangelo’ Fruit [J]. Chinese Journal of Tropical Crops, 2019, 40(4): 758-765. |
[7] | HU Xuefang, TIAN Zhiqing, LIANG Liang, ZHU Xiangmin, JIANG Haoye, WANG Shikui, PEI Haisheng. The Effect of Chitosan Oligosaccharide Complex Iodine (CCOS-I) on the Inhibition of Rice Rhizoctonia solani and the Effect of Defense Enzyme Activity Inhibitory [J]. Chinese Journal of Tropical Crops, 2018, 39(8): 1590-1595. |
[8] | GENG Hongzhuo LIU Xiaogang ZHONG Yuan YANG Qiliang SHI Weisheng. Interactions between Superabsorbent Polymers and Nitrogen on Growth and Water Use of Arabica Coffee [J]. Chinese Journal of Tropical Crops, 2014, 35(3): 466-470. |
[9] | LU Xiaojing XU Ruili YAN Qingxiang LI Kaimian YE Jianqiu HUNAG Jie. Effects of N,P,K Combined Application on the Yield and Quality of Cassava [J]. Chinese Journal of Tropical Crops, 2013, 34(12): 2326-2330. |
[10] | LI Chonggao HUANG Jianchu LI Mengfan HAN Ming XUE Haibo ZHANG Ting JIANG Jinjin. Membrane Performance Influence of Deacetyl Glucomannan/Chitosan Blend Film Preparation Parameters [J]. Chinese Journal of Tropical Crops, 2013, 34(10): 2018-2024. |
[11] | ZHAN Wei ZHANG Xin LV Yanchao ZHANG He WANG Fang QIU Xiaocong. Antibacterial Activity of Three Kinds of Molecular Weight Chitosan on Fusarium oxysporum f.sp.cubense [J]. Chinese Journal of Tropical Crops, 2012, 33(1): 132-136. |
[12] | LIJianguo YANG Li XU Shiqiant LI Xiaodong. Effect of NaCl and Chitosan on Essential Oil in Thymus vulgaris L. of Tissue Culture [J]. Chinese Journal of Tropical Crops, 2011, 32(10): 1910-1914. |
[13] | Zhang Xueqin, Ouyang Haibo, Xie Zhinan, Lai Ruiyun, Li Huihua, Su Minghua, Zheng Mingqiong. Effects of Chitosan on the Germination and Related Enzyme Activities of Carica papaya Seeds [J]. Chinese Journal of Tropical Crops, 2010, 31(10): 1726-1729. |
[14] | Pan Yonggui , Duan Qi Chen Weixin . Effect of Chitosan Coating on Quality Maintenanceof Fresh- cut Carambola [J]. Chinese Journal of Tropical Crops, 2008, 29(2): 145-149. |
[15] | Xue Xinghual Zheng Xiangqian Zhu Ronghua Qiu Houyuan. Preparation of Water-soluble Chitooligosaccharides [J]. Chinese Journal of Tropical Crops, 2005, 26(4): 83-85. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||