Chinese Journal of Tropical Crops ›› 2021, Vol. 42 ›› Issue (10): 2859-2868.DOI: 10.3969/j.issn.1000-2561.2021.10.015
• Omics & Biotechnology • Previous Articles Next Articles
LIN Xianzu1,2, XIAO Xiaohu2, YANG Jianghua2, QIN Yunxia2, LONG Xiangyu2, FANG Yongjun2,*()
Received:
2020-12-28
Revised:
2021-03-19
Online:
2021-10-25
Published:
2021-11-25
Contact:
FANG Yongjun
CLC Number:
LIN Xianzu, XIAO Xiaohu, YANG Jianghua, QIN Yunxia, LONG Xiangyu, FANG Yongjun. Genome-wide Identification and Expression Analysis of the CAMTA Family in Rubber Tree (Hevea brasiliensis)[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2859-2868.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2021.10.015
基因名称 Gene name | 基因ID Gene ID | 内含子 数目 Intron number | 蛋白序列长度 Protein length/aa | 分子量 Molecular weigh/kD | 等电点 Isoelectric point | 结构域预测 Predicted pfam domain | 亚细胞定位 Subcellular prediction | 总平均疏水性 Grand average of hydropathicity | 信号肽 预测 Singal petides |
---|---|---|---|---|---|---|---|---|---|
HbCAMTA1 | scaffold0625_117727 | 12 | 923 | 104.34 | 6.45 | CG-1 domain | Nucleus | ?0.439 | NA |
HbCAMTA2 | scaffold0703_610088 | 11 | 991 | 111.30 | 7.83 | CG-1 domain | Nucleus | ?0.522 | NA |
HbCAMTA3 | scaffold0010_4040802 | 12 | 1069 | 120.85 | 5.63 | CG-1 domain | Nucleus | ?0.546 | NA |
HbCAMTA4 | scaffold0824_240435 | 12 | 983 | 110.41 | 5.32 | CG-1 domain | Nucleus | ?0.574 | NA |
HbCAMTA5 | scaffold0444_896392 | 12 | 1086 | 121.99 | 5.92 | CG-1 domain | Nucleus | ?0.53 | NA |
HbCAMTA6 | scaffold0711_36887 | 12 | 974 | 109.51 | 5.92 | CG-1 domain | Nucleus | ?0.533 | NA |
HbCAMTA7 | scaffold0624_160516 | 12 | 928 | 104.70 | 6.42 | CG-1 domain | Nucleus | ?0.384 | NA |
HbCAMTA8 | scaffold0909_393686 | 12 | 1068 | 119.94 | 5.46 | CG-1 domain | Nucleus | ?0.502 | NA |
Tab. 1 Physicochemical properties of HbCAMTAs
基因名称 Gene name | 基因ID Gene ID | 内含子 数目 Intron number | 蛋白序列长度 Protein length/aa | 分子量 Molecular weigh/kD | 等电点 Isoelectric point | 结构域预测 Predicted pfam domain | 亚细胞定位 Subcellular prediction | 总平均疏水性 Grand average of hydropathicity | 信号肽 预测 Singal petides |
---|---|---|---|---|---|---|---|---|---|
HbCAMTA1 | scaffold0625_117727 | 12 | 923 | 104.34 | 6.45 | CG-1 domain | Nucleus | ?0.439 | NA |
HbCAMTA2 | scaffold0703_610088 | 11 | 991 | 111.30 | 7.83 | CG-1 domain | Nucleus | ?0.522 | NA |
HbCAMTA3 | scaffold0010_4040802 | 12 | 1069 | 120.85 | 5.63 | CG-1 domain | Nucleus | ?0.546 | NA |
HbCAMTA4 | scaffold0824_240435 | 12 | 983 | 110.41 | 5.32 | CG-1 domain | Nucleus | ?0.574 | NA |
HbCAMTA5 | scaffold0444_896392 | 12 | 1086 | 121.99 | 5.92 | CG-1 domain | Nucleus | ?0.53 | NA |
HbCAMTA6 | scaffold0711_36887 | 12 | 974 | 109.51 | 5.92 | CG-1 domain | Nucleus | ?0.533 | NA |
HbCAMTA7 | scaffold0624_160516 | 12 | 928 | 104.70 | 6.42 | CG-1 domain | Nucleus | ?0.384 | NA |
HbCAMTA8 | scaffold0909_393686 | 12 | 1068 | 119.94 | 5.46 | CG-1 domain | Nucleus | ?0.502 | NA |
基因名Gene name | miRNA登录号miRNA_Acc. | 期望值Expectation | 抑制性Inhibition | 多样性Multiplicity |
---|---|---|---|---|
HbCAMTA1 | gma-miR4347 | 2.5 | Cleavage | 1 |
hvu-miR6190 | 3.0 | Cleavage | 1 | |
ppt-miR1219d | 2.5 | Cleavage | 1 | |
sly-miR6024 | 3.0 | Cleavage | 1 | |
stu-miR6024-3p | 3.0 | Cleavage | 1 | |
HbCAMTA2 | ata-miR2275c-3p | 3.0 | Cleavage | 1 |
ata-miR9674b-3p | 2.5 | Cleavage | 1 | |
ath-miR2937 | 3.0 | Cleavage | 1 | |
bdi-miR2275c | 3.0 | Cleavage | 1 | |
mes-miR2275 | 3.0 | Cleavage | 1 | |
mes-miR2950 | 2.0 | Cleavage | 1 | |
osa-miR2275a | 3.0 | Cleavage | 1 | |
osa-miR2275b | 3.0 | Cleavage | 1 | |
tae-miR2275-3p | 3.0 | Cleavage | 1 | |
vvi-miR2950-5p | 2.0 | Cleavage | 1 | |
HbCAMTA3 | aly-miR4244 | 3.0 | Cleavage | 1 |
aqc-miR529 | 3.0 | Cleavage | 1 | |
cme-miR159b | 2.5 | Cleavage | 1 | |
gma-miR5371-3p | 3.0 | Cleavage | 1 | |
hbr-miR6174 | 2.5 | Translation | 1 | |
osa-miR159c | 2.5 | Cleavage | 1 | |
osa-miR159d | 2.5 | Cleavage | 1 | |
osa-miR159e | 2.5 | Cleavage | 1 | |
sly-miR9474-5p | 3.0 | Cleavage | 1 | |
HbCAMTA4 | aly-miR156g-3p | 2.5 | Cleavage | 1 |
aly-miR3437-5p | 3.0 | Cleavage | 1 | |
bcy-miR529 | 3.0 | Cleavage | 1 | |
bgy-miR529 | 3.0 | Cleavage | 1 | |
osa-miR2868 | 3.0 | Translation | 1 | |
zma-miR399e-5p | 3.0 | Cleavage | 1 | |
HbCAMTA5 | aly-miR828-5p | 3.0 | Translation | 1 |
ath-miR828 | 3.0 | Translation | 1 | |
mdm-miR159c | 3.0 | Cleavage | 1 | |
mtr-miR2673a | 3.0 | Translation | 1 | |
mtr-miR2673b | 3.0 | Translation | 1 | |
HbCAMTA6 | aly-miR156g-3p | 2.5 | Cleavage | 1 |
aly-miR4230 | 2.5 | Cleavage | 1 | |
aly-miR4238 | 3.0 | Cleavage | 2 | |
HbCAMTA7 | csi-miR3950 | 3.0 | Cleavage | 1 |
gma-miR4347 | 2.5 | Cleavage | 1 | |
hme-miR-316 | 3.0 | Cleavage | 1 | |
osa-miR169q | 3.0 | Cleavage | 1 | |
stu-miR8022 | 2.0 | Cleavage | 1 | |
HbCAMTA8 | aly-miR774b-5p | 3.0 | Cleavage | 1 |
gma-miR5371-3p | 3.0 | Cleavage | 1 | |
mtr-miR2600b | 3.0 | Cleavage | 1 | |
mtr-miR2600c | 3.0 | Cleavage | 1 | |
mtr-miR2600d | 3.0 | Cleavage | 1 | |
mtr-miR2600e | 3.0 | Cleavage | 1 | |
stu-miR8024a-3p | 2.5 | Cleavage | 2 | |
stu-miR8024a-3p | 3.0 | Translation | 2 | |
stu-miR8024b | 2.5 | Cleavage | 2 | |
stu-miR8024b | 3.0 | Translation | 2 |
Tab. 2 Predicted miRNA of HbCAMTAs
基因名Gene name | miRNA登录号miRNA_Acc. | 期望值Expectation | 抑制性Inhibition | 多样性Multiplicity |
---|---|---|---|---|
HbCAMTA1 | gma-miR4347 | 2.5 | Cleavage | 1 |
hvu-miR6190 | 3.0 | Cleavage | 1 | |
ppt-miR1219d | 2.5 | Cleavage | 1 | |
sly-miR6024 | 3.0 | Cleavage | 1 | |
stu-miR6024-3p | 3.0 | Cleavage | 1 | |
HbCAMTA2 | ata-miR2275c-3p | 3.0 | Cleavage | 1 |
ata-miR9674b-3p | 2.5 | Cleavage | 1 | |
ath-miR2937 | 3.0 | Cleavage | 1 | |
bdi-miR2275c | 3.0 | Cleavage | 1 | |
mes-miR2275 | 3.0 | Cleavage | 1 | |
mes-miR2950 | 2.0 | Cleavage | 1 | |
osa-miR2275a | 3.0 | Cleavage | 1 | |
osa-miR2275b | 3.0 | Cleavage | 1 | |
tae-miR2275-3p | 3.0 | Cleavage | 1 | |
vvi-miR2950-5p | 2.0 | Cleavage | 1 | |
HbCAMTA3 | aly-miR4244 | 3.0 | Cleavage | 1 |
aqc-miR529 | 3.0 | Cleavage | 1 | |
cme-miR159b | 2.5 | Cleavage | 1 | |
gma-miR5371-3p | 3.0 | Cleavage | 1 | |
hbr-miR6174 | 2.5 | Translation | 1 | |
osa-miR159c | 2.5 | Cleavage | 1 | |
osa-miR159d | 2.5 | Cleavage | 1 | |
osa-miR159e | 2.5 | Cleavage | 1 | |
sly-miR9474-5p | 3.0 | Cleavage | 1 | |
HbCAMTA4 | aly-miR156g-3p | 2.5 | Cleavage | 1 |
aly-miR3437-5p | 3.0 | Cleavage | 1 | |
bcy-miR529 | 3.0 | Cleavage | 1 | |
bgy-miR529 | 3.0 | Cleavage | 1 | |
osa-miR2868 | 3.0 | Translation | 1 | |
zma-miR399e-5p | 3.0 | Cleavage | 1 | |
HbCAMTA5 | aly-miR828-5p | 3.0 | Translation | 1 |
ath-miR828 | 3.0 | Translation | 1 | |
mdm-miR159c | 3.0 | Cleavage | 1 | |
mtr-miR2673a | 3.0 | Translation | 1 | |
mtr-miR2673b | 3.0 | Translation | 1 | |
HbCAMTA6 | aly-miR156g-3p | 2.5 | Cleavage | 1 |
aly-miR4230 | 2.5 | Cleavage | 1 | |
aly-miR4238 | 3.0 | Cleavage | 2 | |
HbCAMTA7 | csi-miR3950 | 3.0 | Cleavage | 1 |
gma-miR4347 | 2.5 | Cleavage | 1 | |
hme-miR-316 | 3.0 | Cleavage | 1 | |
osa-miR169q | 3.0 | Cleavage | 1 | |
stu-miR8022 | 2.0 | Cleavage | 1 | |
HbCAMTA8 | aly-miR774b-5p | 3.0 | Cleavage | 1 |
gma-miR5371-3p | 3.0 | Cleavage | 1 | |
mtr-miR2600b | 3.0 | Cleavage | 1 | |
mtr-miR2600c | 3.0 | Cleavage | 1 | |
mtr-miR2600d | 3.0 | Cleavage | 1 | |
mtr-miR2600e | 3.0 | Cleavage | 1 | |
stu-miR8024a-3p | 2.5 | Cleavage | 2 | |
stu-miR8024a-3p | 3.0 | Translation | 2 | |
stu-miR8024b | 2.5 | Cleavage | 2 | |
stu-miR8024b | 3.0 | Translation | 2 |
Fig. 5 Analysis of expression levels of HbCAMTAs in tissue specific, ethylene treated, low temperature treated and leaves at different developmental stages
[1] |
Chin D, Means A R. Calmodulin: a prototypical calcium sensor[J]. Trends in Cell Biology, 2000, 10(8):322-328.
PMID |
[2] |
Grant M, Brown I, Adams S, et al. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death[J]. Plant Journal, 2000, 23(4):441-450.
PMID |
[3] |
Xu H, Heath M C. Role of calcium in signal transduction during the hypersensitive response caused by basidiospore- derived infection of the cowpea rust fungus[J]. The Plant Cell, 1998, 10(4):585-597.
PMID |
[4] |
Kim M C, Chung W S, Yun D J, et al. Calcium and calmodulin-mediated regulation of gene expression in plants[J]. Molecular Plant, 2009, 2(1):13-21.
DOI URL |
[5] |
Kim Y, Gilmour S J, Chao L, et al. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynjournal and priming of immunity genes[J]. Molecular Plant, 2020, 13(1):157-168.
DOI URL |
[6] |
Pei J, Flieder D B, Patchefsky A, et al. Detecting MYB and MYBL1 fusion genes in tracheobronchial adenoid cystic carcinoma by targeted RNA-sequencing[J]. Modern Pathology, 2019, 32(10):1416-1420.
DOI URL |
[7] |
Zhu D, Hou L, Xiao P, et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress[J]. Plant Science, 2019, 280:132-142.
DOI URL |
[8] |
Yang Y, Yoo C G, Rottmann W, et al. PdWND3A, a wood-associated NAC domain-containing protein, affects lignin biosynjournal and composition in Populus[J]. BMC Plant Biology, 2019, 19(1):486.
DOI URL |
[9] |
Lorenzo O. bZIP edgetic mutations: at the frontier of plant metabolism, development and stress trade-off[J]. Journal of Experimental Botany, 2019, 70(20):5517-5520.
DOI PMID |
[10] |
Galon Y, Finkler A, Fromm H. Calcium-regulated transcription in plants[J]. Molecular Plant, 2010, 3(4):653-669.
DOI PMID |
[11] |
Reddy A S N, Ali G S, Celesnik H, et al. Coping with stresses: Roles of calcium-and calcium/calmodulin-regulated gene expression[J]. The Plant Cell, 2011, 23(6):2010.
DOI URL |
[12] |
Thomashow M F. Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway[J]. Plant Physiology, 2010, 154(2):571-577.
DOI PMID |
[13] |
Kim Y, Park S, Gilmour S J, et al. Roles of CAMTA transcription factors and salicylic acid in configuring the low- temperature transcriptome and freezing tolerance of Arabidopsis[J]. The Plant Journal, 2013, 75(3):364-376.
DOI URL |
[14] | Yue R, Lu C, Sun T, et al. Identification and expression profiling analysis of calmodulin-binding transcription activator genes in maize (Zea mays L.) under abiotic and biotic stresses[J]. Frontiers in Plant Science, Frontiers, 2015, 6(576):576. |
[15] |
Tang CR, Yang M, Fang Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6):16073.
DOI URL |
[16] |
Kudla J, Batistič O, Hashimoto K. Calcium signals: The lead currency of plant information processing[J]. The Plant Cell, 2010, 22(3):541-563.
DOI PMID |
[17] |
DeFalco T A, Chiasson D, Munro K, et al. Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor-like kinase family[J]. FEBS Letters, 2010, 584(23):4717-4724.
DOI PMID |
[18] |
Yang T, Poovaiah B W. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants[J]. Journal of Biological Chemistry, 2002, 277(47):45049-45058.
DOI URL |
[19] |
Finkler A, Ashery-Padan R, Fromm H. CAMTAs: calmodulin-binding transcription activators from plants to human[J]. FEBS Letters, 2007, 581(21):3893-3898.
PMID |
[20] |
Yang T, Peng H, Whitaker B D, et al. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit[J]. Physiologia Plantarum, 2013, 148(3):445-455.
DOI URL |
[21] |
Doherty C J, Buskirk H A V, Myers S J, et al. Roles for arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. The Plant Cell, 2009, 21(3):972-984.
DOI URL |
[22] |
Galon Y, Nave R, Boyce J M, et al. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis[J]. FEBS Letters, 2008, 582(6):943-948.
DOI PMID |
[23] |
Nie H, Zhao C, Wu G, et al. SR1, A calmodulin-binding transcription fFactor, modulates plant defense and ethylene-Induced senescence by directly regulating NDR1 and EIN3[J]. Plant Physiology, 2012, 158(4):1847-1859.
DOI URL |
[24] |
Qiu Y, Xi J, Du L, et al. Coupling calcium/ calmodulin- mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/ CAMTA3[J]. Plant Molecular Biology, 2012, 79(1-2):89-99.
DOI URL |
[25] |
Bouché N, Scharlat A, Snedden W, et al. A novel family of calmodulin-binding transcription activators in multicellular organisms[J]. Journal of Biological Chemistry, 2002, 277(24):21851-21861.
DOI URL |
[26] |
Chang Y, Bai Y, Wei Y, et al. CAMTA3 negatively regulates disease resistance through modulating immune response and extensive transcriptional reprogramming in cassava[J]. Tree Physiology, 2020, 40(11):1520-1533.
DOI URL |
[27] |
Wei M, Xu X, Li C. Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress[J]. Scientific Reports, 2017, 7(1):17910.
DOI URL |
[28] | Ali E, Raza M A, Cai M, et al. Calmodulin-binding transcription activator (CAMTA) genes family: Genome-wide survey and phylogenetic analysis in flax(Linum usitatissimum)[J]. PLoS One, 15(7):e0236454. |
[29] |
Gonzalez M W, Pearson W R. Homologous over-extension: a challenge for iterative similarity searches[J]. Nucleic Acids Research, 2010, 38(7):2177-2189.
DOI PMID |
[30] |
Pearson W R, Sierk M L. The limits of protein sequence comparison?[J]. Current Opinion in Structural Biology, 2005, 15(3):254-260.
DOI URL |
[31] |
Mistry J, Finn R D, Eddy S R, et al. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions[J]. Nucleic Acids Research, 2013, 41(12):e121.
DOI URL |
[32] |
Bateman A, Coin L, Durbin R, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2004, 32(suppl_1):D138-D141.
DOI URL |
[33] |
Yang F, Dong F, Hu F, et al. Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.)[J]. BMC Genetics, 2020, 21(1):105.
DOI PMID |
[34] |
Prasad K V S K, Abdel-Hameed A A E, Xing D, et al. Global gene expression analysis using RNA-seq uncovered a new role for SR1/CAMTA3 transcription factor in salt stress[J]. Scientific Reports, 2016, 6(1):27021.
DOI URL |
[35] |
Yang T, Peng H, Whitaker B D, et al. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening[J]. BMC Plant Biology, 2012, 12(1):19.
DOI URL |
[36] | Tokizawa M, Kobayashi Y, Saito T, et al. STOP1, CAMTA2 and other transcription factors are involved in aluminum-inducible AtALMT1 expression[J]. Plant Physiology, 2015: 114. |
[37] |
Du L, Ali G S, Simons K A, et al. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity[J]. Nature, 2009, 457(7233):1154-1158.
DOI URL |
[38] |
Zhang L, Du L, Shen C, et al. Regulation of plant immunity through ubiquitin-mediated modulation of Ca2+-calmodulin- AtSR1/CAMTA3 signaling[J]. The Plant Journal, 2014, 78(2):269-281.
DOI PMID |
[39] |
Kim Y, Gilmour S J, Chao L, et al. Arabidopsis CAMTA transcription factors regulate pipecolic acid biosynjournal and priming of immunity Genes[J]. Molecular Plant, 2020, 13(1):157-168.
DOI URL |
[1] | WANG Yiwei, FENG Renjun, HUANG Yacheng, LIU Xiaodong, FANG Yongjun, LUO Hongli, TANG Chaorong. Expression and Function of an ACC Oxidase Gene (HbACO7) from the Bark of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2435-2442. |
[2] | DENG Zhi, LI Dejun. Identification and Expression Analysis of profilin Gene Family in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2443-2450. |
[3] | FAN Jingzhang, $\boxed{\hbox{HUA Yuwei}}$ , FAN Yueting, XIN Shichao, DAI Xuemei, HUANG Tiandai, HUANG Huasun, LI Ji. Parameter Optimization and Accessory Improvement of GDS-80 Handheld Gene Gun for Rubber Tree Genetic Transformation [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2458-2467. |
[4] | LIANG Qun, DENG Zhi, LEI Keyi, HUANG Huasun, AN Zewei, CHENG Han. Identification of mapkkk15 Mutant from Arabidopsis and Function Analysis to Abiotic Stress [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2494-2500. |
[5] | SHI Minjing, ZHANG Shixin, CHAO Jinquan, WU Shaohua, YANG Shuguang, TIAN Weimin. Comparision of Secondary Laticifer Differentiation of Mature Tree Induced by Pre-tapping in Wickham Germplasm of Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2555-2562. |
[6] | LI Yan, YU Wencai, LU Qingzhi, YANG Shuguang, TIAN Weimin. Effects of Abiotic Stresses on the Expression of Heat Shock Transcription Factor (HSF) Family Members in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2119-2125. |
[7] | SHI Xiangyu, LONG Xiangyu, FANG Yongjun, YANG Jianghua, XIAO Xiaohu, QIN Yunxia. Functional Analysis of NOD26-like Intrinsic Proteins in Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2126-2133. |
[8] | LIN Ping, WANG Mingyuan, LI Yuqing, LIU Jianfu, ZHANG Huaying, LIN Siduan. Identification of Banana TGA Transcription Factor Family and the Expression Analysis under Fusarium Wilt Infection [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2134-2142. |
[9] | HUANG Jie, SONG Jianling, AN Na, ZOU Xiaoyan, LI Jifu, LIU Guodao, CHEN Zhijian. Cloning and Expression Analysis of Phosphate Starvation Responsive Genes, SgPHR1 and SgPHR2, in Stylosanthes guianensis [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2158-2166. |
[10] | JIN Longfei, YIN Xinxing, CAO Hongxing. Genome-wide Identification and Expression of EgGRF Gene Family in Oil Palm [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1817-1823. |
[11] | HUANG Xiaofang, BI Chuyun, WANG Heshou, CHEN Qijun, HU Yunzhuo, CHEN Xuanyang, LIN Shiqiang. Genome-wide Identification and Analysis of NAC Transcription Factor Family of Ipomoea batatas [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1831-1840. |
[12] | ZHANG Langzhi, LI Jifu, HUANG Jie, WANG Zhiyong, CHEN Zhijian. Cloning and Expression Analysis of AcMATE1 in Axonopus compressus [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1860-1867. |
[13] | LU Yali, ZHANG Shixin, WANG Zhenhui, TIAN Weimin, SHI Minjing. Bark Structure of the Clone ‘RY7-33-97’ with Different Level of Tapping Panel Dryness (TPD) in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1918-1924. |
[14] | LI Mu, CAI Yuanbao, YANG Xiangyan, HUANG Sijie, LI Jidong, TAN Qinliang, QIU Wenwu, FANG Weikuan. Cloning and Expression Analysis of MYB Gene AcoMYB1 in Pineapple (Ananas comosus) [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1209-1215. |
[15] | JIA Liqiang, ZHAO Qiufang, CHEN Shu. Expression Profiling of Eight ZmDOFs Genes Responding to Abiotic Stresses in Maize [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1237-1244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||