Chinese Journal of Tropical Crops ›› 2021, Vol. 42 ›› Issue (10): 2798-2805.DOI: 10.3969/j.issn.1000-2561.2021.10.007
• Variety Breeding and Genetic Diversity of Tropical Crops • Previous Articles Next Articles
TANG Jun1,2, WANG Wenqiang2, DING Xipeng2, MA Xiangli1, BI Yufen1, GUO Fenggen1,*()
Received:
2021-04-25
Revised:
2021-07-16
Online:
2021-10-25
Published:
2021-11-25
Contact:
GUO Fenggen
CLC Number:
TANG Jun, WANG Wenqiang, DING Xipeng, MA Xiangli, BI Yufen, GUO Fenggen. Review of Research in Genetic Diversity and Mechanism of Stress Resistance of Pigeonpea[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2798-2805.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2021.10.007
[1] | 郑卓杰. 中国食用豆类学[M]. 北京: 中国农业出版社, 1997. |
[2] | Nene Y J, Hall S D, Sheila V K. The pigeonpea[M]. UK: CAB International, 1990. |
[3] |
Bohra A, Saxena K B, Varshney R K, et al. Genomics-assisted breeding for pigeonpea improvement[J]. Theoretical and Applied Genetics, 2020, 133(5):1721-1737.
DOI URL |
[4] | 唐军, 王文强, 黄春琼, 等. 木豆育种及分子生物学研究进展[J]. 热带农业科学, 2013, 33(8):36-41. |
[5] | Saxena K B, Kumar R V, Singh L, et al. Development of a cytoplasmic-nuclear male-sterility system in pigeonpea[C]// International Crops Research Institute for the Semi-Arid Tropics. Progress report presented at the forth consultative group meeting on cytoplasmic male sterility in pigeonpea. Patancheru, Andhra Pradesh, India: ICRISAT Asia Center, 1997: 19. |
[6] | 宗绪晓, KB Saxena. 木豆杂种优势利用研究进展[J]. 作物杂志, 2006(5):37-40. |
[7] | 孙寰, 张井勇, 王玉民, 等. 木豆、苜蓿和大豆3种豆科作物杂种优势利用概述[J]. 中国农业科学, 2009, 42(5):1528-1539. |
[8] | 康智明, 徐晓俞, 郑开斌, 等. 木豆种质资源形态与农艺性状的多样性分析[J]. 热带亚热带植物学报, 2017, 25(1):51-56. |
[9] | 高桂娟, 李志丹. 45份木豆种质资源物候期及形态多样性分析[J]. 生态科学, 2017, 36(2):100-106. |
[10] | 陈燕华, 罗瑞鸿, 吴子恺, 等. 木豆种质资源农艺与品质性状的相关性及遗传参数分析[J]. 广西农业科学, 2009, 40(11):1397-1402. |
[11] | 蒋慧萍, 李杨瑞. 利用同工酶、RAPD技术及形态学标记对不同地域木豆品种的遗传多样性研究[J]. 西南农业学报, 2010, 23(2):483-486. |
[12] | 蒋慧萍, 李杨瑞. 木豆随机扩增多态性DNA的反应体系研究[J]. 安徽农业科学, 2008, 36(20):8489-8491. |
[13] | 郭蓓, 金文林, 赵波, 等. 木豆种质资源遗传多样性的分析[J]. 中国农学通报, 2010, 26(19):378-382. |
[14] |
Kotresh H, Fakrudin B, Punnuri S M, et al. Identification of two RAPD markers genetically linked to a recessive allele of a Fusarium wilt resistance gene in pigeonpea (Cajanus cajan L. Millsp.)[J]. Euphytica, 2006, 149(1/2):113-120.
DOI URL |
[15] | 闫龙, 关建平, 宗绪晓. 木豆种质资源遗传多样性研究中的AFLP技术优化及引物筛选[J]. 植物遗传资源学报, 2004, 5(4):342-345. |
[16] | 闫龙, 关建平, 宗绪晓. 木豆种质资源AFLP标记遗传多样性分析[J]. 作物学报, 2007, 33(5):790-798. |
[17] |
Ganapathy K N, Gnanesh B N, Byre Gowda M, et al. AFLP analysis in pigeonpea (Cajanus cajan (L.) Millsp.) revealed close relationship of cultivated genotypes with some of its wild relatives[J]. Genetic Resources and Crop Evolution, 2011, 58(6):837-847.
DOI URL |
[18] | Burns M J, Edwards K J, Newbury H J, et al. Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeonpea (Cajanus cajan)[J]. Molecular Ecology Resources, 2001, 1(4):283-285. |
[19] |
Odeny D A, Jayashree B, Ferguson M, et al. Development, characterization and utilization of microsatellite markers in pigeonpea[J]. Plant Breeding, 2007, 126(2):130-136.
DOI URL |
[20] |
Aruna R, Manohar Rao D, Sivaramakrishnan S, et al. Efficiency of three DNA markers in revealing genetic variation among wild Cajanus species[J]. Plant Genetic Resources, 2009, 7(2):113-121.
DOI URL |
[21] |
Khera P, Saxena R, Sameerkumar C V, et al. Mitochondrial SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.)[J]. Euphytica, 2015, 206(3):737-746.
DOI URL |
[22] |
Mahato A K, Sharma A K, Sharma T R, et al. An improved draft of the pigeonpea (Cajanus cajan (L.) Millsp.) genome[J]. Data in Brief, 2018, 16:376-380.
DOI PMID |
[23] |
Singh N K, Gupta D K, Jayaswal P K, et al. The first draft of the pigeonpea genome sequence[J]. Journal of Plant Biochemistry and Biotechnology, 2012, 21(1):98-112.
DOI URL |
[24] |
Saxena R K, Patel K, Sameer Kumar C V, et al. Molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.)[J]. Theoretical and Applied Genetics, 2018, 131(8):1605-1614.
DOI URL |
[25] |
Kumawat G, Raje R S, Bhutani S, et al. Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.)[J]. BMC Genetics, 2012, 13(1):1-11.
DOI URL |
[26] |
Raju N L, Gnanesh B N, Lekha P, et al. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.)[J]. BMC Plant Biology, 2010, 10(1):1-22.
DOI URL |
[27] |
Nigam D, Saxena S, Ramakrishna G, et al. De novo assembly and characterization of Cajanus scarabaeoides (L.) thouars transcriptome by paired-end sequencing[J]. Frontiers in Molecular Biosciences, 2017, 4:48.
DOI URL |
[28] |
Dutta S, Kumawat G, Singh B P, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh[J]. BMC Plant Biology, 2011, 11(1):1-13.
DOI URL |
[29] |
Pazhamala L T, Agarwal G, Bajaj P, et al. Deciphering transcriptional programming during pod and seed development using RNA-seq in pigeonpea (Cajanus cajan)[J]. PLoS One, 2016, 11(10):e0164959.
DOI URL |
[30] |
Pazhamala L T, Purohit S, Saxena R K, et al. Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation[J]. Journal of Experimental Botany, 2017, 68(8):2037-2054.
DOI PMID |
[31] |
Gao Z X, Dong B Y, Cao H Y, et al. Time series RNA-seq in pigeonpea revealed the core genes in metabolic pathways under aluminum stress[J]. Genes, 2020, 11(4):380.
DOI URL |
[32] |
Varshney R K, Saxena R K, Upadhyaya H D, et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits[J]. Nature Genetics, 2017, 49(7):1082-1088.
DOI PMID |
[33] |
Obala J, Saxena R K, Singh V K, et al. Development of sequence-based markers for seed protein content in pigeonpea[J]. Molecular Genetics and Genomics, 2019, 294(1):57-68.
DOI URL |
[34] | 朱雯雯. 植物抗逆性的研究进展[J]. 种子科技, 2017, 35(7): 133, 135. |
[35] | 王洁. 铅、铜复合胁迫对木豆幼苗生长和生理特性的影响[J]. 辽宁农业职业技术学院学报, 2019, 21(1):11-13. |
[36] | 王沿沿, 侯高杰, 陈玉连, 等. 铝毒胁迫下不同木豆品种的耐铝性差异比较[J]. 西南农业学报, 2015, 28(4):1490-1496. |
[37] |
Garg N, Kashyap L. Joint effects of Si and mycorrhiza on the antioxidant metabolism of two pigeonpea genotypes under As (III) and (V) stress[J]. Environmental Science and Pollution Research, 2019, 26(8):7821-7839.
DOI URL |
[38] |
Garg N, Saroy K. Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress[J]. Environmental Science and Pollution Research, 2020, 27(3):3043-3064.
DOI URL |
[39] | 秦丽凤, 左方华, 段居琪, 等. 低磷与铝毒胁迫对木豆根尖及其分泌的酸性磷酸酶活性的影响[J]. 广西农业科学, 2006, 37(5):533-536. |
[40] |
Sidhu S K, Kaur J, Singh S, et al. Phosphorus acquisition and utilization related variables of pigeonpea germplasm by correlation, principal component and path analysis approaches[J]. Agricultural Research Journal, 2018, 55(1):52.
DOI URL |
[41] |
Sidhu S K, Kaur J, Singh S, et al. Variation of Morpho- physiological traits in geographically diverse pigeonpea [Cajanus cajan (L.) Millsp] germplasm under different phosphorus conditions[J]. Journal of Plant Nutrition, 2018, 41(10):1321-1332.
DOI URL |
[42] | 崔凯. 7种植物种子超干保存适宜方案选择及其机制分析[D]. 北京: 中国林业科学研究院, 2008. |
[43] | 崔凯, 李昆, 孙永玉, 等. 云南元谋干热河谷地区6种植物种子的抗逆生理特性[J]. 东北林业大学学报, 2008, 36(11):55-58. |
[44] |
HUANG F, CHENG Y, CAO J H. Response of germination physiology of Cajanus cajan seeds to drought stress: comparison between Karst water and allogenic water treatments[J]. Journal of Resources and Ecology, 2015, 6(4):263-268.
DOI URL |
[45] | 姚娜, 史静, 邓素媛, 等. 干旱胁迫下几种岩溶区适生灌木种子的萌发特性研究及抗旱性评价[J]. 草学, 2020(1):19-25. |
[46] |
Duhan S, Kumari A, Bala S M, et al. Effects of waterlogging, salinity and their combination on stress indices and yield attributes in pigeonpea (Cajanus cajan L. Millsp.) genotypes[J]. Indian Journal of Plant Physiology, 2018, 23(1):65-76.
DOI URL |
[47] |
Bansal R, Srivastava J P. Effect of waterlogging on photosynthetic and biochemical parameters in pigeonpea[J]. Russian Journal of Plant Physiology, 2015, 62(3):322-327.
DOI URL |
[48] | Kumutha D, Ezhilmathi K, Sairam R K, et al. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes[J]. Bilogia Plantarum, 2009, 53(1):75-84. |
[49] | Sai Y, Sreekanth M, Kumar D S, et al. Morphological and biochemical factors associated with resistance to Helicoverpa armigera (Hubner) and Maruca vitrata (Geyer) in Pigeonpea[J]. Journal of Entomology and Zoology Studies, 2018, 6(2):3073-3078. |
[50] |
Garg N, Sharma A. Role of putrescine (Put) in imparting salt tolerance through modulation of put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp[J]. Symbiosis, 2019, 79(1):59-74.
DOI URL |
[51] |
Bhandari K, Sharma K D, Hanumantha R B, et al. Temperature sensitivity of food legumes: a physiological insight[J]. Acta Physiologiae Plantarum, 2017, 39(3):1-22.
DOI URL |
[52] | 陈超. 喀斯特地区饲用灌木抗旱抗寒性的生理生态学机制研究[D]. 北京: 中国农业大学, 2014. |
[53] |
Gupta R. Tissue specific disruption of photosynthetic electron transport rate in pigeonpea (Cajanus cajan L.) under elevated temperature[J]. Plant Signaling and Behavior, 2019, 14(6):1601952.
DOI URL |
[54] | 董碧莹. 木豆MATE基因抗金属胁迫作用解析[D]. 北京: 北京林业大学, 2019. |
[55] |
Daspute A A, Kobayashi Y, Panda S K, et al. Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea[J]. Planta, 2018, 247(1):201-214.
DOI URL |
[56] | 冼芸轩. 用发根农杆菌介导转化的方法探究木豆耐铝基因的特性[D]. 南宁: 广西大学, 2017. |
[57] | 乔光, 文晓鹏, 洪怡. 木豆抗旱相关基因CcGST1克隆与表达分析[J]. 西南林业大学学报(自然科学), 2017, 37(4):1-7. |
[58] | 乔光, 文晓鹏, 丁贵杰. 木豆GDSL脂肪酶基因的克隆及表达分析[J]. 西南农业学报, 2017, 30(8):1720-1725. |
[59] |
Priyanka B, Sekhar K, Reddy V D, et al. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance[J]. Plant Biotechnology Journal, 2010, 8(1):76-87.
DOI PMID |
[60] | Kumar R R, Yadav S, Shrinivas D, et al. Transcriptome of pigeonpea roots under Water deficit analyzed by suppression subtractive hybridization[J]. Journal of Agricultural Science and Technology, 2015, 17:1333-1345. |
[61] |
Sinha P, Singh V K, Saxena R K, et al. Superior haplotypes for haplotype-based breeding for drought tolerance in pigeonpea (Cajanus cajan L.)[J]. Plant Biotechnology Journal, 2020, 18(12):2482-2490.
DOI URL |
[62] |
Song Z H, Niu L L, Yang Q, et al. Genome-wide identification and characterization of UGT family in pigeonpea (Cajanus cajan) and expression analysis in abiotic stress[J]. Trees, 2019, 33(4):987-1002.
DOI URL |
[63] |
Awana M, Jain N, Samota M K, et al. Protein and gene integration analysis through proteome and transcriptome brings new insight into salt stress tolerance in pigeonpea (Cajanus cajan L.)[J]. International Journal of Biological Macromolecules, 2020, 164:3589-3602.
DOI URL |
[64] |
Singh A, Singh P K, Sharma A K, et al. Understanding the role of the WRKY gene family under stress conditions in pigeonpea (Cajanus cajan L.)[J]. Plants, 2019, 8(7):214.
DOI URL |
[65] |
Song Z H, Dong B Y, Yang Q, et al. Screening of CBL genes in pigeon pea with focus on the functional analysis of CBL4 in abiotic stress tolerance and flavonoid biosynjournal[J]. Environmental and Experimental Botany, 2020, 177:104102.
DOI URL |
[66] |
Awana M, Yadav K, Rani K, et al. Insights into salt stress-induced biochemical, molecular and epigenetic regulation of spatial responses in pigeonpea (Cajanus cajan L.)[J]. Journal of Plant Growth Regulation, 2019, 38(4):1545-1561.
DOI URL |
[67] |
Meitei A L, Bhattacharjee M, Dhar S, et al. Activity of defense related enzymes and gene expression in pigeon pea (Cajanus cajan) due to feeding of Helicoverpa armigera larvae[J]. Journal of Plant Interactions, 2018, 13(1):231-238.
DOI URL |
[68] |
Das A, Datta S, Sujayanand G K, et al. Expression of chimeric Bt gene, Cry1Aabc in transgenic pigeonpea (cv. Asha) confers resistance to gram pod borer (Helicoverpa armigera Hubner.)[J]. Plant Cell, Tissue and Organ Culture, 2016, 127(3):705-715.
DOI URL |
[69] | Singh S, Kumar N R, Maniraj R, et al. Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera[J]. Scientific Reports, 2018, 8(1):1-12. |
[70] |
Kumar S M, Kumar B K, Sharma K K, et al. Genetic transformation of pigeonpea with rice chitinase gene[J]. Plant Breeding, 2004, 123(5):485-489.
DOI URL |
[71] |
Hussain K, Mungikar K, Kulkarni A, et al. Identification, characterization and expression analysis of pigeonpea miRNAs in response to Fusarium wilt[J]. Gene, 2018, 653:57-64.
DOI PMID |
[72] | Liu C, Wu Y H, Liu Y X, et al. Genome-wide analysis of tandem duplicated genes and their contribution to stress resistance in pigeonpea (Cajanus cajan)[J]. Genomics, 2021, 113(1):728-735. |
[73] | Mir R R, Rather I A, Bhat M A, et al. Molecular mapping of genes and QTLs in pigeonpea[M]//Varshney R, Saxena R, Jackson S. The Pigeonpea Genome. Cham, Switzerland: Springer International Publishing, 2017: 55-64. |
[1] | WANG Hongli, BU Chaoyang, ZENG Yanhua, LONG Qiangyu. Study on Genetic Diversity of Cymbidium Ensifolium Germplasm Based on ISSR Marker [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2526-2534. |
[2] | WANG Yuanzhong, SHEN Tao, ZHANG Jinyu. Phenotypic Variation and Resource Evaluation of Paris polyphylla var. yunnanensis and Its Relative Species [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2535-2541. |
[3] | ZHANG Ye, YE Beilei, WU Jing, LIU Le, LI Weishi, HAO Daicheng, XIE Shangqian, LING Peng. Analysis of Genetic Diversity of Phenotypic Traits of 77 Oncidium Germplasm Resources [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2183-2190. |
[4] | XU Zhijun, WU Xiaoli, HU Xiaowen, LIU Yang. Phenotypic Diversity of 33 Introduced Peanut Germplasm Accessions and Preliminary Adaptability Evaluation in West Guangdong [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1885-1895. |
[5] | HUANG Yueqin, FANG Rong, CHEN Xuejun, ZHOU Kunhua, YUAN Xinjie, LEI Gang. Analysis of Phenotypic Traits and Evaluation Genetic Diversity of Eggplant Germplasm Resources [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1896-1904. |
[6] | WANG Chong, WANG Lianjun, YANG Xinsun, LEI Jian, CHAI Shasha, ZHANG Wenying, JIAO Chunhai, TIAN Xiaohai. Construction of cpSSR Fingerprints and Genetic Diversity Analysis of 104 Sweetpotato Varieties [J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1549-1556. |
[7] | QI Lan, WANG Shizheng, HUANG Liyun, ZHOU Huanqi, LIU Liyun. Genetic Diversity Analysis of Areca catechu Varieties from Hainan Based on SSR Markers [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1297-1304. |
[8] | HU Wenbin, HONG Qingmei, LI Jing, PU Wenhui, HE Yun, LI Hongli, LI Qiong. Genetic Diversity Analysis and SSR Fingerprint Construction of Pitaya Cultivars [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1310-1317. |
[9] | ZHANG Jinzhu, ZOU Chengwu, HUANG Junyuan, DENG Chongling, CHEN Baoshan, ZHANG Muqing. Investigation and the Genetic Diversity Analysis of the Pathogenic Virus Causing Citrus Tatter Leaf Disease and Citrus Leaf Spot Disease in Guangxi [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1414-1423. |
[10] | HU Fuchu, WU Xiaobo, CHEN Zhe, WU Fengzhi, ZHOU Wenjing, FENG Xuejie, FAN Hongyan, ZHOU Ruiyun, WANG Xianghe. Genetic Diversity Analysis of Very Early Maturing Litchi Germplasm Resources Based on SRAP Molecular Markers [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 920-926. |
[11] | LIN Zongkeng, ZHANG Tianxiang, YANG Junjie. Assessment of Genetic Diversity and Relationship among 18 Moringa Species Based on SRAP Marker [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 945-950. |
[12] | CUI Xueqiang, TANG Xuan, HUANG Changyan, DENG Jieling, LI Xiuling, LU Jiashi, ZHANG Zibin. Genetic Diversity Analysis and Fingerprinting Construction of Dendrobium Germplasm Resources by iPBS Marker [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 317-324. |
[13] | FENG Hua, WANG Feiquan, CHEN Rongbing, ZHANG Bo, ZHUANG Xiaoyun, LIU Mengna, ZENG Ziqing. Genetic Diversity Analysis of Phenotypic Characters of Tea Germplasm Resources from Different Origins [J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2758-2768. |
[14] | WU Zhijiang, HUANG Fengzhu, HUANG Lifang, LU Guifeng, LIANG Guidong, LI Zhenying, LIU Chaoan, DENG Haiyan. Genetic Characterizaiton of Pitaya Accessions based on ISSR Analysis [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 47-53. |
[15] | WANG Chunfang,YU Xinghua,WANG Xianhong,YANG Qinghui. Genetic Diversity Analysis Based on Main Phenotypic Characteristics of Erianthus arundinaceum Germplasm from Different Regions [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1108-1116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||