Chinese Journal of Tropical Crops ›› 2021, Vol. 42 ›› Issue (9): 2458-2467.DOI: 10.3969/j.issn.1000-2561.2021.09.004
• Omics & Biotechnology • Previous Articles Next Articles
FAN Jingzhang1, $\boxed{\hbox{HUA Yuwei}}$ 2, FAN Yueting3, XIN Shichao2, DAI Xuemei2, HUANG Tiandai2,*(), HUANG Huasun2,*(
), LI Ji2
Received:
2021-01-12
Revised:
2021-02-24
Online:
2021-09-25
Published:
2021-11-01
Contact:
HUANG Tiandai,HUANG Huasun
CLC Number:
FAN Jingzhang, $\boxed{\hbox{HUA Yuwei}}$ , FAN Yueting, XIN Shichao, DAI Xuemei, HUANG Tiandai, HUANG Huasun, LI Ji. Parameter Optimization and Accessory Improvement of GDS-80 Handheld Gene Gun for Rubber Tree Genetic Transformation[J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2458-2467.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2021.09.004
Fig. 2 Improvements to bombardment accessories A: Front view of the filter screen; B: Top view of the filter screen; C: Not covered with a filter screen, the blue circle is the bombardment range; D: Cover with filter screen; E: Bombardment range was cut; F: The filter screen is stuck in the hollow of the petri dish, and it is placed on the test tube rack for bombardment.
轰击压力 Bombardment pressure/psi | 目标间隔盘距离 Target spacer distance/cm | 荧光数 Fluorescence numbers |
---|---|---|
30 | 6 | 33.00±31.31c |
40 | 6 | 168.80±98.89b |
50 | 6 | 166.20±38.35b |
60 | 6 | 329.80±88.87a |
70 | 6 | 75.60±24.20c |
Tab. 1 Effect of different bombardment pressures on the transformation efficiency of embryos
轰击压力 Bombardment pressure/psi | 目标间隔盘距离 Target spacer distance/cm | 荧光数 Fluorescence numbers |
---|---|---|
30 | 6 | 33.00±31.31c |
40 | 6 | 168.80±98.89b |
50 | 6 | 166.20±38.35b |
60 | 6 | 329.80±88.87a |
70 | 6 | 75.60±24.20c |
材料 Material | 目标间隔距离 Target spacer distance/cm | 轰击压力 Bombardment pressure/psi | 推荐圈数 Recommended number of laps | 改进方式 Improvement mode | 荧光数 Fluorescence numbers |
---|---|---|---|---|---|
胚 | 3 | 60 | 3 | 遮盖 | 574.00±121.54b |
60 | 3 | 不遮盖 | 368.00±102.23c | ||
6 | 60 | 3 | 遮盖 | 263.40±20.21c | |
60 | 3 | 不遮盖 | 76.60±19.33d | ||
60 | 3 | 底部漏气 | 834.40±147.77a | ||
愈伤 | 3 | 50 | 4 | 遮盖 | 147.40±17.34b |
6 | 50 | 4 | 遮盖 | 635.00±143.62a |
Tab. 2 Experimental program and results after bombardment equipment improvement
材料 Material | 目标间隔距离 Target spacer distance/cm | 轰击压力 Bombardment pressure/psi | 推荐圈数 Recommended number of laps | 改进方式 Improvement mode | 荧光数 Fluorescence numbers |
---|---|---|---|---|---|
胚 | 3 | 60 | 3 | 遮盖 | 574.00±121.54b |
60 | 3 | 不遮盖 | 368.00±102.23c | ||
6 | 60 | 3 | 遮盖 | 263.40±20.21c | |
60 | 3 | 不遮盖 | 76.60±19.33d | ||
60 | 3 | 底部漏气 | 834.40±147.77a | ||
愈伤 | 3 | 50 | 4 | 遮盖 | 147.40±17.34b |
6 | 50 | 4 | 遮盖 | 635.00±143.62a |
Fig. 7 Bombardment effect of embryos and fragile calli A: 60 psi, 6 cm, 3 circles, no cover; B: 60 psi, 3 cm, 3 circles, cover; C: 60 psi, 6 cm, 3 circles, hollow petri dish; D: 50 psi, 3 cm, 4 circles, cover; E: 50 psi, 6 cm, 4 circles, cover.
处理 Treatments | 统计方式 Statistical methods | 荧光数 Fluorescence numbers | 误差 Deviation | 误差百分比 Deviation percentage/% | 时长 Time/min |
---|---|---|---|---|---|
60 psi,3 cm,3圈,不遮盖 | 肉眼 | 93 | 4 | 4.30 | 1.0 |
Image J | 89 | 0.5 | |||
60 psi,3 cm,3圈,遮盖 | 肉眼 | 144 | -4 | 2.78 | 2.0 |
Image J | 148 | 0.5 | |||
50 psi,3 cm,4圈,遮盖 | 肉眼 | 224 | 22 | 9.82 | 3.0 |
Image J | 202 | 0.5 |
Tab. 3 Difference of green fluorescent spots between counting by naked eyes and Image J
处理 Treatments | 统计方式 Statistical methods | 荧光数 Fluorescence numbers | 误差 Deviation | 误差百分比 Deviation percentage/% | 时长 Time/min |
---|---|---|---|---|---|
60 psi,3 cm,3圈,不遮盖 | 肉眼 | 93 | 4 | 4.30 | 1.0 |
Image J | 89 | 0.5 | |||
60 psi,3 cm,3圈,遮盖 | 肉眼 | 144 | -4 | 2.78 | 2.0 |
Image J | 148 | 0.5 | |||
50 psi,3 cm,4圈,遮盖 | 肉眼 | 224 | 22 | 9.82 | 3.0 |
Image J | 202 | 0.5 |
仪器 Apparatus | 打枪次数 Shot | 荧光数 Fluorescence number | 荧光数均值±标准差 Fluorescence numbers mean±SD | 用时 Time/min | 用时均值±标准差 Time mean±SD/min |
---|---|---|---|---|---|
手持 基因枪 | 1 | 853 | 744.67±107.02a | 1.5 | 1.77±0.25b |
2 | 639 | 2.0 | |||
3 | 742 | 1.8 | |||
台式 基因枪 | 1 | 401 | 691.67±372.81a | 13.5 | 14.17±0.76a |
2 | 1112 | 14.0 | |||
3 | 562 | 15.0 |
Tab. 4 Comparison of transformation efficiency and work efficiency between handheld gene gun GDS-80 and desktop gene gun PDS-1000/He
仪器 Apparatus | 打枪次数 Shot | 荧光数 Fluorescence number | 荧光数均值±标准差 Fluorescence numbers mean±SD | 用时 Time/min | 用时均值±标准差 Time mean±SD/min |
---|---|---|---|---|---|
手持 基因枪 | 1 | 853 | 744.67±107.02a | 1.5 | 1.77±0.25b |
2 | 639 | 2.0 | |||
3 | 742 | 1.8 | |||
台式 基因枪 | 1 | 401 | 691.67±372.81a | 13.5 | 14.17±0.76a |
2 | 1112 | 14.0 | |||
3 | 562 | 15.0 |
[1] | 邹智, 杨礼富, 王真辉, 等. 巴西橡胶树转基因研究现状与展望[J]. 中国生物工程杂志, 2010, 30(1):85-92. |
[2] | 赵辉, 陈雄庭, 王旭, 等. 巴西橡胶树遗传转化技术研究进展[J]. 热带作物学报, 2008(1):121-125. |
[3] | Arokiaraj P, Jones H, Hafsah J, et al. Agrobacterium mediated transformation of Hevea anther calli and their regeneration into plantlets[J]. Journal of Natural Rubber Research, 1996, 11(2):77-87. |
[4] |
Jayashree R, Pekha K, Venkatachalam P, et al. Genetic transformation and regeneration of rubber tree Hevea brasiliensis Muell.-Arg.) transgenic plants with a constitutive version of ananti-oxidative stress uperoxide dismutase gene[J]. Plant Cell Reports, 2003, 22:201-209.
PMID |
[5] | Arokiaraj P, Rüker F, Obermayr E, et al. Expression of human serum albumin in transgenic Hevea brasiliensis[J]. Journal of Rubber Research, 2002, 5(3):157-166. |
[6] |
Blanc G, Baptiste C, Oliver G, et al. Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. plants[J]. Plant Cell Reports, 2006, 24(12):724-733.
DOI URL |
[7] |
Leclercq J, Martin F, Sanier C, et al. Over-expression of a cytosolic isoform of the HbCuZnSOD gene in Hevea brasiliensis changes its response to a water deficit[J]. Plant Mol Biol, 2012, 80(3):255-272.
DOI PMID |
[8] |
黄天带, 李哲, 孙爱花, 等. 根癌农杆菌介导的橡胶树花药愈伤组织遗传转化体系的建立[J]. 作物学报, 2010, 36(10):1691-1697.
DOI |
[9] | Huang T D, Li J, Li Y T, et al. Somatic embryo, an alternative target tissue for Agrobacterium-mediated transformation in Hevea brasiliensis[J]. Journa of Rubber Research, 2015, 18(3):171-188. |
[10] |
Lestari R, Rio M, Martin F, et al. Overexpression of Hevea brasiliensis ethylene response factor HbERF-IXc5 enhances growth and tolerance to abiotic stress and affects laticifer differentiation[J]. Plant Biotechnology Journal, 2018, 16(1):322-336.
DOI PMID |
[11] |
Jayashree R, Nazeem P A, Rekha K, et al. Over-expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (hmgr1) gene under super-promoter for enhanced latex biosynjournal in rubber tree (Hevea brasiliensis Muell. Arg.)[J]. Plant Physiology and Biochemistry, 2018, 127:414-424.
DOI PMID |
[12] |
Fan Y, Xin S, Dai X, et al. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleo proteins[J]. Industrial Crops and Products, 2020, 146:112146.
DOI URL |
[13] | 徐淑平, 卫志明. 基因枪的使用方法介绍[J]. 植物生理学通讯, 1998, 34(1):41-43. |
[14] |
Arokiaraj P, Jones H, Cheong K F, et al. Gene insertion into Hevea brasiliensis[J]. Plant Cell Reports, 1994, 13(8):425-431.
DOI PMID |
[15] | 王颖, 陈雄庭, 张秀娟, 等. 基因枪法将GAI基因导入巴西橡胶的研究[J]. 热带亚热带植物学报, 2006, 14(3):179-182. |
[16] |
Wang K J, Tang D, Hong L L, et al. DEP and AFO regulate reproductive habit in rice[J]. PLoS Genetics, 2010, 6(1):e1000818.
DOI URL |
[17] |
Hua Y W, Huang T D, Huang H S. Micropropagation of self- rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis[J]. Plant Breeding, 2010, 129(2):202-207.
DOI URL |
[18] | 戴雪梅, 黄天带, 李季, 等. AgNO3对橡胶树花药愈伤组织形态及体胚发生的影响[J]. 广西植物, 2016, 36(12):1426-1431 |
[19] | 靳溪, 席超, 刘进, 等. PDS-1000/He台式基因枪使用要点及常见问题处理[J]. 生命科学仪器, 2013, 11(Z1):39-43. |
[20] | 王军, 付爱根, 徐敏, 等. 基因枪法在遗传转化中的研究进展[J]. 基因组学与应用生物学, 2018, 37(1):459-468. |
[21] | Hagio T. Optimizing the particle bombardment method for efficient genetic transformation[J]. Japan Agricultural Research Quarterly, 1998, 32(4):239-248. |
[22] | 杨晚竹, 高亚男, 梁昊岳, 等. 显微成像分析技术在中性粒细胞运动及吞噬功能研究中的应用[J]. 中国实验血液学杂志, 2015, 23(3):832-837. |
[1] | WANG Yiwei, FENG Renjun, HUANG Yacheng, LIU Xiaodong, FANG Yongjun, LUO Hongli, TANG Chaorong. Expression and Function of an ACC Oxidase Gene (HbACO7) from the Bark of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2435-2442. |
[2] | DENG Zhi, LI Dejun. Identification and Expression Analysis of profilin Gene Family in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2443-2450. |
[3] | LIANG Qun, DENG Zhi, LEI Keyi, HUANG Huasun, AN Zewei, CHENG Han. Identification of mapkkk15 Mutant from Arabidopsis and Function Analysis to Abiotic Stress [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2494-2500. |
[4] | SHI Minjing, ZHANG Shixin, CHAO Jinquan, WU Shaohua, YANG Shuguang, TIAN Weimin. Comparision of Secondary Laticifer Differentiation of Mature Tree Induced by Pre-tapping in Wickham Germplasm of Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2555-2562. |
[5] | SHI Xiangyu, LONG Xiangyu, FANG Yongjun, YANG Jianghua, XIAO Xiaohu, QIN Yunxia. Functional Analysis of NOD26-like Intrinsic Proteins in Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2126-2133. |
[6] | LU Yali, ZHANG Shixin, WANG Zhenhui, TIAN Weimin, SHI Minjing. Bark Structure of the Clone ‘RY7-33-97’ with Different Level of Tapping Panel Dryness (TPD) in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1918-1924. |
[7] | LU Yali, ZHANG Shixin, YANG Shuguang, TIAN Weimin, SHI Minjing. Selection of reference genes for qRT-PCR in TPD-related Study of ‘Reyan 7-33-97’ in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1282-1289. |
[8] | LI Wenxiu, HE Junjun, ZHANG Hualin, LUO Ping. Identification of F1 Hybrids of Hevea brasiliensis by SSR Markers [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1305-1309. |
[9] | GUI Mingchun, QIU Yanfen, TANG Min, TIAN Hai, GUAN Yan, LI Ling, SUN Xiaolong, LIANG Guoping. Effects of Various Nursery Measures on the Growth Performance of Green Budlings of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1387-1393. |
[10] | HU Yiyu, ZHANG Hualin, FENG Chengtian, LUO Ping, YUAN Kun, SUN Liang, LIU Hui, WANG Zhenhui. Application of Tapping Panel Dryness (TPD) Rehabilitation Combination Preparation for Clone ‘93-114’ in Hevea Brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1409-1413. |
[11] | LIU Shaojun, TONG Jinhe, CHEN Xiaomin, LI Weiguang. Prediction Model of Annual Rubber Potential Productivity Based on Climatic Suitability [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1154-1158. |
[12] | LI Ling, GUI Mingchun, GUAN Yan, MAO Changli, TIAN Hai, ZHANG Fengliang, WU Yu, DUAN Anan, LIANG Guoping. Cold Resistance of Rubber Trees (Hevea brasiliensis) by Combined Recovery and Conductivity Analysis [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 370-377. |
[13] | HU Zhenzhen, LI Zengping, SHAN Jinxue, ZHANG Yu, XIONG Qiuyu, WU Ruhui. Identification and Biological Characteristics of Pathogen of Ganoderma Causing Stem Rot on Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 488-494. |
[14] | XIE Quanliang, YU Li, YUAN Boxuan, ZHANG Xueyan, MA Junjun, WANG Xuchu. Proteomics Research Progress of Rubber-Producing Plants [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 599-609. |
[15] | ZHANG Yuhang,PAN Ranran,LI Fei,TAO Zhiqiang,WANG Ying,GAO Heqiong,ZHUANG Nansheng. Cloning, Physical Location and Expression Analysis of HbGRF in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1723-1732. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||