Chinese Journal of Tropical Crops ›› 2021, Vol. 42 ›› Issue (9): 2435-2442.DOI: 10.3969/j.issn.1000-2561.2021.09.001
• Omics & Biotechnology • Next Articles
WANG Yiwei1, FENG Renjun1,2, HUANG Yacheng1, LIU Xiaodong1, FANG Yongjun3, LUO Hongli1, TANG Chaorong1,*()
Received:
2020-11-16
Revised:
2021-02-23
Online:
2021-09-25
Published:
2021-11-01
Contact:
TANG Chaorong
CLC Number:
WANG Yiwei, FENG Renjun, HUANG Yacheng, LIU Xiaodong, FANG Yongjun, LUO Hongli, TANG Chaorong. Expression and Function of an ACC Oxidase Gene (HbACO7) from the Bark of Hevea brasiliensis[J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2435-2442.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2021.09.001
基因名称 Gene name | Scaffold序列号 Scaffold number | CDS长度 CDS length/bp |
---|---|---|
HbACO1 | scaffold0113_1714149 | 939 |
HbACO2 | scaffold1057_27974 | 957 |
HbACO3 | scaffold2408_724 | 957 |
HbACO4 | scaffold0371_1076732 | 936 |
HbACO5 | scaffold0611_59152 | 936 |
HbACO6 | scaffold1057_68935 | 927 |
HbACO7 | scaffold0894_322678 | 921 |
HbACO8 | scaffold0075_154737 | 939 |
Tab. 1 H. brasiliensis ACO gene family predicted by Hevea genome and transcriptome sequences
基因名称 Gene name | Scaffold序列号 Scaffold number | CDS长度 CDS length/bp |
---|---|---|
HbACO1 | scaffold0113_1714149 | 939 |
HbACO2 | scaffold1057_27974 | 957 |
HbACO3 | scaffold2408_724 | 957 |
HbACO4 | scaffold0371_1076732 | 936 |
HbACO5 | scaffold0611_59152 | 936 |
HbACO6 | scaffold1057_68935 | 927 |
HbACO7 | scaffold0894_322678 | 921 |
HbACO8 | scaffold0075_154737 | 939 |
引物名称 Primer name | 引物序列(5°-3°) Primer sequence (5°-3°) | 用途 Purpose |
---|---|---|
HbACO1-F | ACTTCATTTCATACACATCAGAGACA | CDS扩增 |
HbACO1-R | CTTAGGACAATTATATCCCAAAGGTG | |
HbACO2-F | GCTGTCACCATGGCAAAGATCAAA | |
HbACO2-R | CAGAGAACAAACTGATGACAAAGA | |
HbACO3-F | ATGGAGTTTCCAGTAATTAACCTT | |
HbACO3-R | TTAAGCTGTTGCAATAGGACCCCA | |
HbACO4-F | TCTCTCTTAATTGTATTCCTTTCCTA | |
HbACO4-R | CTTTCAGGATTATTGAGGCAAATCTT | |
HbACO5-F | ATGGCAATTCCAGTGATTGAT | |
HbACO5-R | TCACACAGCCCTCACAGCTTG | |
HbACO6-F | ATGGAGTTCCCGGTCATTAAC | |
HbACO6-R | AGCTGTAGCAATGGGAACCAA | |
HbACO7-F | ACAATCTAAACTAGAAAGAAGAGAAGG | |
HbACO7-R | AAGGAAGAATTATTGGAGCTTGAGAAT | |
HbACO8-F | AGAAAATGGAGACCTTCCCTGTTA | |
HbACO8-R | CACCACTAATCAGTAAACTCATCA | |
M13-F | TGTAAAACGACGGCCAGT | 菌落PCR |
M13-R | CAGGAAACAGCTATGACC | |
pNC-ET- HbACO7-F | CCTGGTGCCGCGCGGCAGCATGGAGATACCAGTGATTGATTTTAGTG | 原核表达 |
pNC-ET- HbACO7-R | GGTCTCAGCAGACCACAAGTTTAGACATAGAGACCGTTGTGCCC | |
T7 | TAATACGACTCACTATAGGG | 原核表达 检测 |
T7 ter | GCTAGTTATTGCTCAGCGG | |
UBC2a-F | CATTTATGCGGATGGAAGCA | qRT-PCR 分析 (内参基因) |
UBC2a-R | CAGGGGAGTTTGGATTTGGA | |
HbACO7- qP-F | TGAGAACAGGAGCAAAATGATGG | qRT-PCR 分析 (HbACO7) |
HbACO7- qP-R | TTCACCAACTGCTTTACTTTCTCC |
Tab. 2 Primer and sequences used in this study
引物名称 Primer name | 引物序列(5°-3°) Primer sequence (5°-3°) | 用途 Purpose |
---|---|---|
HbACO1-F | ACTTCATTTCATACACATCAGAGACA | CDS扩增 |
HbACO1-R | CTTAGGACAATTATATCCCAAAGGTG | |
HbACO2-F | GCTGTCACCATGGCAAAGATCAAA | |
HbACO2-R | CAGAGAACAAACTGATGACAAAGA | |
HbACO3-F | ATGGAGTTTCCAGTAATTAACCTT | |
HbACO3-R | TTAAGCTGTTGCAATAGGACCCCA | |
HbACO4-F | TCTCTCTTAATTGTATTCCTTTCCTA | |
HbACO4-R | CTTTCAGGATTATTGAGGCAAATCTT | |
HbACO5-F | ATGGCAATTCCAGTGATTGAT | |
HbACO5-R | TCACACAGCCCTCACAGCTTG | |
HbACO6-F | ATGGAGTTCCCGGTCATTAAC | |
HbACO6-R | AGCTGTAGCAATGGGAACCAA | |
HbACO7-F | ACAATCTAAACTAGAAAGAAGAGAAGG | |
HbACO7-R | AAGGAAGAATTATTGGAGCTTGAGAAT | |
HbACO8-F | AGAAAATGGAGACCTTCCCTGTTA | |
HbACO8-R | CACCACTAATCAGTAAACTCATCA | |
M13-F | TGTAAAACGACGGCCAGT | 菌落PCR |
M13-R | CAGGAAACAGCTATGACC | |
pNC-ET- HbACO7-F | CCTGGTGCCGCGCGGCAGCATGGAGATACCAGTGATTGATTTTAGTG | 原核表达 |
pNC-ET- HbACO7-R | GGTCTCAGCAGACCACAAGTTTAGACATAGAGACCGTTGTGCCC | |
T7 | TAATACGACTCACTATAGGG | 原核表达 检测 |
T7 ter | GCTAGTTATTGCTCAGCGG | |
UBC2a-F | CATTTATGCGGATGGAAGCA | qRT-PCR 分析 (内参基因) |
UBC2a-R | CAGGGGAGTTTGGATTTGGA | |
HbACO7- qP-F | TGAGAACAGGAGCAAAATGATGG | qRT-PCR 分析 (HbACO7) |
HbACO7- qP-R | TTCACCAACTGCTTTACTTTCTCC |
基因名称 Gene name | 序列来源 Sequence source | CDS度 CDS length /bp | 序列比对 Sequence alignment | |
---|---|---|---|---|
单个碱基差别 Nucleobase difference | 氨基酸差别 Amino acid difference | |||
HbACO1 | 本文克隆 | 939 | 5 | 5 |
基因组预测 | 939 | |||
HbACO2 | 本文克隆 | 957 | 无 | 无 |
基因组预测 | 957 | |||
HbACO3 | 本文克隆 | 956 | 1 | 无 |
基因组预测 | 956 | |||
HbACO4 | 本文克隆 | 937 | 2 | 1 |
基因组预测 | 937 | |||
HbACO5 | 本文克隆 | 936 | 2 | 1 |
基因组预测 | 936 | |||
HbACO6 | 本文克隆 | 927 | 1 | 无 |
基因组预测 | 927 | |||
HbACO7 | 本文克隆 | 921 | 无 | 无 |
基因组预测 | 921 | |||
HbACO8 | 本文克隆 | 939 | 1 | 无 |
基因组预测 | 939 |
Tab. 3 Coding sequence alignment of the HbACOs family genes predicted by Hevea genome or cloned
基因名称 Gene name | 序列来源 Sequence source | CDS度 CDS length /bp | 序列比对 Sequence alignment | |
---|---|---|---|---|
单个碱基差别 Nucleobase difference | 氨基酸差别 Amino acid difference | |||
HbACO1 | 本文克隆 | 939 | 5 | 5 |
基因组预测 | 939 | |||
HbACO2 | 本文克隆 | 957 | 无 | 无 |
基因组预测 | 957 | |||
HbACO3 | 本文克隆 | 956 | 1 | 无 |
基因组预测 | 956 | |||
HbACO4 | 本文克隆 | 937 | 2 | 1 |
基因组预测 | 937 | |||
HbACO5 | 本文克隆 | 936 | 2 | 1 |
基因组预测 | 936 | |||
HbACO6 | 本文克隆 | 927 | 1 | 无 |
基因组预测 | 927 | |||
HbACO7 | 本文克隆 | 921 | 无 | 无 |
基因组预测 | 921 | |||
HbACO8 | 本文克隆 | 939 | 1 | 无 |
基因组预测 | 939 |
Fig. 5 Prokaryotic expression of HbACO7 fusion protein detected by SDS-PAGE M: Prestained protein molecular weight marker; 1: HbACO7 fusion protein purified by Beaver BeadsTM Nickel; 2: E. coli (pNC- ET28-HbACO7, IPTG induced); 3: E. coli (pNC-ET28, IPTG induced; 4: E. coli (pNC-ET28, un-induced).
Fig. 6 Analysis of HbACO7 fusion protein by Western Blot 1: Negative control (IPTG-induced E. coli harboring the blank vector); 2: HbACO7 fusion protein without purification; 3: HbACO7 fusion protein purified by Beaver BeadsTM Nickel.
Fig. 7 Reaction products of enzyme activity of HbACO7 fusion protein by GC-MS A: HbACO7 fusion protein; B: Boiled HbACO7 fusion protein; C: Ethylene standard.
[1] | 吴春太, 李维国, 高新生, 等. 我国橡胶树育种面临的问题与对策[J]. 江西农业学报, 2009, 21(12):74-77. |
[2] | 黄宗道. 我国天然橡胶业面临的挑战和发展战略[J]. 中国工程科学, 2001, 3(2):28-32. |
[3] | 安锋, 林位夫, 谢贵水, 等. 国内外巴西橡胶树替代作物及技术研发现状[J]. 热带作物学报, 2012, 33(6):1134-1141. |
[4] | 杨少琼, 黎仕剑. 机械创伤和巴西橡胶树的应激乙烯生成及其对排胶量的影响[J]. 热带作物研究, 1982, 2(4):11-13. |
[5] | 刘进平. 乙烯生物合成关键酶基因研究进展[J]. 热带农业科学, 2013, 33(1):51-57. |
[6] | 姚雪, 侯和胜. 高等植物ACO基因研究进展[J]. 安徽农学通报, 2013, 19(Z1):16-17. |
[7] | 位明明, 李维国, 高新生, 等. 巴西橡胶树响应乙烯利刺激的生理及其分子调控机制研究进展[J]. 生物技术通报, 2016, 32(3):1-11. |
[8] | 刘愚, 焦新之. 植物体内乙烯的生物学作用及其调节控制[J]. 植物生理学报, 1978, 4(2):203-220. |
[9] | 汤福强, 刘愚. 植物乙烯生物合成研究进展[J]. 植物生理学通讯, 1994, 30(1):3-10. |
[10] | 陈银华, 黄伟, 王海. ACC氧化酶基因研究进展[J]. 海南大学学报(自然科学版), 2006, 24(2):194-200. |
[11] | 王爱勤, 王自章, 杨丽涛, 等. 乙烯生物合成途径中的两个关键酶基因的研究进展[J]. 广西农业生物科学, 2004, 23(2):164-169. |
[12] | 陈新建, 刘国顺, 陈占宽, 等. 乙烯生物合成途径及其相关基因工程的研究进展[J]. 热带亚热带植物学报, 2002, 10(1):83-98. |
[13] | 范思伟, 杨少琼. 乙烯利在橡胶树中的刺激增产机理及其副作用[J]. 热带作物研究, 1986, 6(1):12-19. |
[14] | 范思伟, 杨少琼. 巴西橡胶的乙烯生理学[J]. 热带作物研究, 1991, 11(3):69-77. |
[15] |
Tang C, Yang M, Fang Y, et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016, 2(6):16073.
DOI URL |
[16] | 黄德宝. 巴西橡胶树蔗糖转运蛋白基因的克隆和表达分析[D]. 海口: 海南大学, 2009. |
[17] | 魏利然, 李辉亮, 郭冬, 等. 巴西橡胶树HbMADS4的克隆及原核表达分析[J]. 热带作物学报, 2015, 36(5):888-894. |
[18] | 杨光华, 刘进平. 文心兰ACC氧化酶基因OnACO1克隆与表达分析[J]. 热带作物学报, 2014, 35(4):693-699. |
[19] |
Xu Z C, Hyodo H, Ikoma Y, et al. Biochemical characterization and expression of recombinant ACC oxidase in Escherichia coli and endogenous ACC oxidase from kiwifruit[J]. Postharvest Biology and Technology, 1998, 14(1):41-50.
DOI URL |
[20] | 李载平. 分子克隆实验指南[J]. 3版. 科学通报, 2002, 47(24):1888. |
[21] | 胡文忠, 姜爱丽, 齐海萍, 等. 鲜切南瓜组织中乙烯产生及1-氨基环丙烷-1-羧酸(ACC)氧化酶活性的变化[J]. 中央民族大学学报(自然科学版), 2007, 16(1):5-8. |
[22] |
Ramadoss N, Gupta D, Vaidya B N, et al. Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance[J]. Biochemical and Biophysical Research Communications, 2018, 503(1):365-370.
DOI URL |
[23] | 宋松泉, 叶永健. ACC氧化酶的测定方法[J]. 中山大学学报(自然科学版), 1997, 36(4):71-74. |
[24] |
Dupille E, Rombaldi C, Lelièvre J M, et al. Purification, properties and partial amino-acid sequence of 1-aminocyclopropane-1-carboxylic acid oxidase from apple fruits[J]. Planta, 1993, 190(1):65-70.
PMID |
[25] |
Dong J G, Fernandez-Maculet J C, Yang S F. Purification and characterization of 1-aminocyclopropane-1-car-boxylate oxidase from apple fruit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(20):9789-9793.
PMID |
[26] |
Binnie J E, Mcmanus M T. Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh[J]. Phytochemistry, 2009, 70(3):348-360.
DOI PMID |
[27] |
Chen H M, Sun J J, Li S, et al. An ACC oxidase gene essential for cucumber carpel development[J]. Molecular Plant, 2016, 9(9):1315-1327.
DOI URL |
[28] | 许闻献, 曾庆, 黄文成. 我国橡胶树割制改革三十年见[C]//农业部农垦局热作处,我国热带作物学会割胶与生理专业委员会编. 橡胶树割胶制度改革论文集(第3集). 北京: 中国科学技术出版社, 2001. |
[29] | 王冬冬. 乙烯利刺激橡胶树排胶的生化机制研究[D]. 海口: 海南大学, 2016. |
[30] | 徐忠传. 成熟猕猴桃果实不同组织中ACC氧化酶基因的表达差异研究[J]. 中国科学技术大学学报, 2001, 31(2):112-117. |
[1] | DENG Zhi, LI Dejun. Identification and Expression Analysis of profilin Gene Family in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2443-2450. |
[2] | FAN Jingzhang, $\boxed{\hbox{HUA Yuwei}}$ , FAN Yueting, XIN Shichao, DAI Xuemei, HUANG Tiandai, HUANG Huasun, LI Ji. Parameter Optimization and Accessory Improvement of GDS-80 Handheld Gene Gun for Rubber Tree Genetic Transformation [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2458-2467. |
[3] | LIANG Qun, DENG Zhi, LEI Keyi, HUANG Huasun, AN Zewei, CHENG Han. Identification of mapkkk15 Mutant from Arabidopsis and Function Analysis to Abiotic Stress [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2494-2500. |
[4] | SHI Minjing, ZHANG Shixin, CHAO Jinquan, WU Shaohua, YANG Shuguang, TIAN Weimin. Comparision of Secondary Laticifer Differentiation of Mature Tree Induced by Pre-tapping in Wickham Germplasm of Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(9): 2555-2562. |
[5] | SHI Xiangyu, LONG Xiangyu, FANG Yongjun, YANG Jianghua, XIAO Xiaohu, QIN Yunxia. Functional Analysis of NOD26-like Intrinsic Proteins in Rubber Tree [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2126-2133. |
[6] | LU Yali, ZHANG Shixin, WANG Zhenhui, TIAN Weimin, SHI Minjing. Bark Structure of the Clone ‘RY7-33-97’ with Different Level of Tapping Panel Dryness (TPD) in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1918-1924. |
[7] | LU Yali, ZHANG Shixin, YANG Shuguang, TIAN Weimin, SHI Minjing. Selection of reference genes for qRT-PCR in TPD-related Study of ‘Reyan 7-33-97’ in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1282-1289. |
[8] | LI Wenxiu, HE Junjun, ZHANG Hualin, LUO Ping. Identification of F1 Hybrids of Hevea brasiliensis by SSR Markers [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1305-1309. |
[9] | GUI Mingchun, QIU Yanfen, TANG Min, TIAN Hai, GUAN Yan, LI Ling, SUN Xiaolong, LIANG Guoping. Effects of Various Nursery Measures on the Growth Performance of Green Budlings of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1387-1393. |
[10] | HU Yiyu, ZHANG Hualin, FENG Chengtian, LUO Ping, YUAN Kun, SUN Liang, LIU Hui, WANG Zhenhui. Application of Tapping Panel Dryness (TPD) Rehabilitation Combination Preparation for Clone ‘93-114’ in Hevea Brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1409-1413. |
[11] | XIN Ming, LI Changbao, SUN Yu, SHENG Jinfeng, TANG Yayuan, SUN Jian, LI Jiemin, LI Li, HE Xuemei, LING Dongning. Variation Characteristics of Aroma Components and Related Enzyme Activities During Storage of Passion Fruit (Passiflora caerulea L.) [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1472-1484. |
[12] | LIU Shaojun, TONG Jinhe, CHEN Xiaomin, LI Weiguang. Prediction Model of Annual Rubber Potential Productivity Based on Climatic Suitability [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1154-1158. |
[13] | CHEN Rongzhu, LI Zhen, LIN Meizhen, WANG Xiaoping, LAI Zhongxiong. Transcriptome Analysis of Ficus hirta Vahl and Expression Profiling of Key Genes Involved in Flavonoid Biosynthesis [J]. Chinese Journal of Tropical Crops, 2021, 42(3): 675-684. |
[14] | LI Ling, GUI Mingchun, GUAN Yan, MAO Changli, TIAN Hai, ZHANG Fengliang, WU Yu, DUAN Anan, LIANG Guoping. Cold Resistance of Rubber Trees (Hevea brasiliensis) by Combined Recovery and Conductivity Analysis [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 370-377. |
[15] | HU Zhenzhen, LI Zengping, SHAN Jinxue, ZHANG Yu, XIONG Qiuyu, WU Ruhui. Identification and Biological Characteristics of Pathogen of Ganoderma Causing Stem Rot on Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 488-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||