Chinese Journal of Tropical Crops ›› 2021, Vol. 42 ›› Issue (8): 2158-2166.DOI: 10.3969/j.issn.1000-2561.2021.08.006
• Omics & Biotechnology • Previous Articles Next Articles
HUANG Jie1, SONG Jianling1, AN Na1, ZOU Xiaoyan1, LI Jifu1, LIU Guodao2, CHEN Zhijian1,2,*()
Received:
2020-08-10
Revised:
2020-09-26
Online:
2021-08-25
Published:
2021-09-09
Contact:
CHEN Zhijian
CLC Number:
HUANG Jie, SONG Jianling, AN Na, ZOU Xiaoyan, LI Jifu, LIU Guodao, CHEN Zhijian. Cloning and Expression Analysis of Phosphate Starvation Responsive Genes, SgPHR1 and SgPHR2, in Stylosanthes guianensis[J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2158-2166.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2021.08.006
引物名称 Primer name | 引物序列(5′-3′) Primer sequence (5°-3°) |
---|---|
SgPHR1-ORF-F | GAGCTCAAAACAATGAAAGCACACCC |
SgPHR1-ORF-R | ACGCGTGCCTCACTCATCTGTCCTTG |
SgPHR1-RT-F | GCACACCCTGCAAAGCAACTCA |
SgPHR1-RT-R | AACATAGGCCCAACTACTCCAC |
SgPHR2-ORF-F | GAGCTCGATCACCATATGGATTGTGTTGC |
SgPHR2-ORF-R | ACGCGTCTTGTCACTTCTTGCAGGTATA |
SgPHR2-RT-F | CTCAGCATGTACCGTTGACACCTG |
SgPHR2-RT-R | GCTTGACCTCACTATCTGATGCGG |
SgEF1a-RT-F | CACTTCAGGACGTGTACAAGATC |
SgEF1a-RT-R | CTTGGAGAGCTTCATGGTGCA |
Tab. 1 Primers for SgPHR1 and SgPHR2 cloning and qRT-PCR analysis
引物名称 Primer name | 引物序列(5′-3′) Primer sequence (5°-3°) |
---|---|
SgPHR1-ORF-F | GAGCTCAAAACAATGAAAGCACACCC |
SgPHR1-ORF-R | ACGCGTGCCTCACTCATCTGTCCTTG |
SgPHR1-RT-F | GCACACCCTGCAAAGCAACTCA |
SgPHR1-RT-R | AACATAGGCCCAACTACTCCAC |
SgPHR2-ORF-F | GAGCTCGATCACCATATGGATTGTGTTGC |
SgPHR2-ORF-R | ACGCGTCTTGTCACTTCTTGCAGGTATA |
SgPHR2-RT-F | CTCAGCATGTACCGTTGACACCTG |
SgPHR2-RT-R | GCTTGACCTCACTATCTGATGCGG |
SgEF1a-RT-F | CACTTCAGGACGTGTACAAGATC |
SgEF1a-RT-R | CTTGGAGAGCTTCATGGTGCA |
Fig. 1 Plant dry weight (A) and P content (B) in stylo at different P treatments *** indicates significant difference between different P treatments at P<0.001 level.
蛋白名称 Protein name | 预测磷酸化位点 Predicted phosphorylation sites | ||
---|---|---|---|
丝氨酸(S) | 苏氨酸(T) | 酪氨酸(Y) | |
SgPHR1 | 14 | 4 | 4 |
SgPHR2 | 11 | 6 | 1 |
Tab. 2 Analysis of phosphorylation sites of SgPHR1 and SgPHR2
蛋白名称 Protein name | 预测磷酸化位点 Predicted phosphorylation sites | ||
---|---|---|---|
丝氨酸(S) | 苏氨酸(T) | 酪氨酸(Y) | |
SgPHR1 | 14 | 4 | 4 |
SgPHR2 | 11 | 6 | 1 |
Fig. 5 Muitiple alignment analysis of SgPHR1 and SgPHR2 with PHRs homologues in other plants Proteins included PHRs from Stylosanthes guianensis, Arabidopsis thaliana (AtPHR1, NP_194590), Zea mays (ZmPHR1, JF831533.1), Oryza sativa (OsPHR1, AK063486.1), Fragaria vesca (FvPHR1, XP_004289982.1), Brassica naus (BnPHR1, JN806156.1) and Glycine max (GmPHR1, HQ007311); Red and blue boxes indicate MYB and CC domains, respectively.
Fig. 6 Phylogenetic analysis of SgPHR1 and SgPHR2 with other PHRs proteins Genebank No. included Arabidopsis thaliana (AtPHR1,NP_194590), Zea mays (ZmPHR1, JF831533.1), Glycine max (GmPHR25, NP_001350613.1), Phaseolus vulgaris (PvPHR1, ACD13206.1), Oryza sativa (OsPHR1, AK063486.1; OsPHR2, AK100065.1; OsPHR3, A2X0Q0.1; OsPHR4, XP_015644151.1), Triticum aestivum (TaPHR1, AGH13375.1), Fragaria vesca (FvPHR1, XP_004289982.1), Brassica naus (BnPHR1, JN806156.1), Prunus mume (PmPHR1, XP_016650539.1), Prunus persica (PpPHR1, XP_020425868.1), Prunus avium (PaPHR1, XP_021831311.1), Malus domestica (MdPHR1, XP_008372382.1), Pyrus bretschneideri (PbPHR1, XP_018506029.1), Medicago truncatula (MtPHR1, XP_003625354.1), Heobroma cacao (HcPHR1, XP_007050189.2), Hevea brasiliensis (HbPHR1, XP_021670552.1), Vitis vinifera (VvPHR1, XP_002270511.1), Raphanus sativus (RsPHR1, XP_018469653.1) and Glycine max (GmPHR1, HQ007311). represents PHRs proteins from stylo.
Fig. 7 Expressions of SgPHR1 (A) and SgPHR2 (B) in different tissues Different lowercase letters indicate significant difference in various tissues at P<0.05 level.
Fig. 8 Expression analysis of SgPHR1 and SgPHR2 in different treatments A: Expressions of SgPHR1 and SgPHR2 at different nutrition deficient treatments; B: Expressions of SgPHR1 and SgPHR2 at different duration of P deficiency. Different lowercase letters indicate significant difference among various treatments at P<0.05 level.
[1] |
Chen S S, Luo Y, Ding G D, et al. Comparative analysis of Brassica napus plasma membrane proteins under phosphorus deficiency using label--free and MaxQuant-based proteomics approaches[J]. Journal of Proteomics, 2016, 133:144-152.
DOI URL |
[2] |
Liu Y, Xie Y R, Wang H, et al. Light and ethylene coordinately regulate the phosphate starvation response through transcriptional regulation of phosphate starvation response1[J]. The Plant Cell, 2017, 29(9):2269-2284.
DOI URL |
[3] | Murakawa M, Ohta H, Shimojima M, et al. Lipid remodeling under acidic conditions and its interplay with low Pi stress in Arabidopsis[J]. Plant Molecular Biology Reporter, 2019, 101(1/2):81-93. |
[4] |
Yang Z B, Rao I M, Horst W J, et al. Interaction of aluminium and drought stress on root growth and crop yield on acid soils[J]. Plant and Soil, 2013, 372(1-2):3-25.
DOI URL |
[5] |
Qu X J, Zhou J Q, Masabni J, et al. Phosphorus relieves aluminum toxicity in oil tea seedlings by regulating the metabolic profiling in the roots[J]. Plant Physiology and Biochemistry, 2020, 152:12-22.
DOI URL |
[6] |
Koopmans G F, Chardon W J, Willigen P, et al. Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability[J]. Journal of Environmental Quality, 2004, 33(4):1393-1402.
PMID |
[7] |
Tania Galindo‐Castaeda, Kathleen M Brown, Jonathan P Lynch, et al. Reduced root cortical burden improves growth and grain yield under low phosphorus availability in maize[J]. Plant Cell and Environment, 2018, 41(7):1579-1592.
DOI URL |
[8] | Güsewell Sabine. Regulation of dauciform root formation and root phosphatase activities of sedges (Carex) by nitrogen and phosphorus[J]. Plant & Soil, 2017, 415(1-2):57-72. |
[9] | 马若囡, 刘庆, 李欢, 等. 缺磷胁迫对甘薯前期根系发育及养分吸收的影响[J]. 华北农学报, 2017, 32(5):171-176. |
[10] |
Li C C, Li C F, Zhang H Y, et al. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean[J]. Physiologia Plantarum, 2017, 159(2):215-227.
DOI URL |
[11] |
Mehdi Y H, Ali I D, Ali M M, et al. Agrobacterium rhizogenes transformed soybeans with AtPAP18 gene show enhanced phosphorus uptake and biomass production[J]. Biotechnology and Biotechnological Equipment, 2018, 32(4):865-873.
DOI URL |
[12] |
Chen Z C, Liao H. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. Journal of Genetics and Genomics, 2016, 43(11):631-638.
DOI URL |
[13] | Chen G H, Yan W, Yang S P, et al. Overexpression of rice phosphate transporter gene OsPT2 enhances tolerance to low phosphorus stress in soybean[J]. Journal of Agricultural Science and Technology, 2015, 17(2):469-482. |
[14] |
Amit Sharma, Alice Mühlroth, Juliette Jouhet, et al. The Myb-like transcription factor Phosphorus Starvation Response (PtPSR) controls conditional P acquisition and remodeling in marine microalgae[J]. New Phytologist, 2020, 225(6):2380-2395.
DOI PMID |
[15] | Xuan L T H, Du N H N, Nguyen B A T, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017, 18(6):483-497. |
[16] | Stanislas Thiriet-Rupert, Gregory Carrier, Benoît Chénais, et al. Transcription factors in microalgae: genome-wide prediction and comparative analysis[J]. BMC Genomics, 2016, 17(1):1-16. |
[17] |
Wykoff D D, Grossman A R, Weeks D P, et al. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(26):15336-15341.
PMID |
[18] |
Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes and Development, 2001, 15(16):2122-2133.
PMID |
[19] |
Nilsson L, Müller R, Nielsen T H, et al. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana[J]. Plant Cell and Environment, 2007, 30(12):1499-1512.
PMID |
[20] |
Guo M, Ruan W Y, Li C Y, et al. Integrative comparison of the role of the Phosphate Response1 subfamily in phosphate signaling and homeostasis in rice[J]. Plant Physiology, 2015, 168(4):1762-1776.
DOI URL |
[21] |
Wang X H, Bai J R, Liu H M, et al. Overexpression of a maize transcription factor ZmPHR1 improves shoot inorganic phosphate content and growth of Arabidopsis under low-phosphate conditions[J]. Plant Molecular Biology Reporter, 2013, 31(3):665-677.
DOI URL |
[22] |
Xue Y B, Xiao B X, Zhu S N, et al. GmPHR25, a GmPHR member up-regulated by phosphate starvation, controls phosphate homeostasis in soybean[J]. Journal of Experimental Botany, 2017, 68(17):4951-4967.
DOI URL |
[23] |
Valdés L O, Arenas H C, Ramírez M, et al. Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus-deficiency signalling in common bean roots[J]. Plant Cell and Environment, 2008, 31(12):1834-1843.
DOI URL |
[24] | 严琳玲, 张瑜, 白昌军. 20份柱花草营养成分分析与评价[J]. 湖北农业科学, 2016(1):128-133. |
[25] | 孙丽莉, 陈志坚, 刘攀道, 等. 柱花草磷转运蛋白SgPT1的克隆和表达分析[J]. 草业学报, 2013, 22(4):187-196. |
[26] | 刘攀道, 董荣书, 丁西朋, 等. 不同磷效率柱花草基因型对外源DNA活化利用能力的比较分析[J]. 分子植物育种, 2018, 16(4):1085-1091. |
[27] | 孙丽莉, 田江, 陈志坚, 等. 柱花草SgSPX1基因的克隆与表达分析[J]. 热带作物学报, 2012, 33(10):1794-1799. |
[28] |
Ren F, Guo Q Q, Chang L L, et al. Brassica napus PHR1 gene encoding a MYB-like protein functions in response to phosphate starvation[J]. PloS One, 2012, 7(8):e44005.
DOI URL |
[29] | Jiang M Q, Sun L F, Isupov M N, et al. Structural basis for the target DNA recognition and binding by the MYB domain of phosphate starvation response 1[J]. The Febs Journal, 2019, 286(14):2809-2821. |
[30] |
Wang Y, Zhang F, Cui W X, et al. The FvPHR1 transcription factor control phosphate homeostasis by transcriptionally regulating miR399a in woodland strawberry[J]. Plant Science, 2019, 280:258-268.
DOI PMID |
[31] | Ruan W Y, Guo M N, Wu P, et al. Phosphate starvation induced OsPHR4 mediates Pi-signaling and homeostasis in rice[J]. Plant Molecular Biology Reporter, 2017, 93(3):327-340. |
[32] |
Tiwari J K, Buckseth T, Zinta R, et al. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress[J]. Scientific Reports, 2020, 10(1):921-941.
DOI URL |
[33] |
Du X Q, Wang F L, Li H, et al. The transcription factor MYB59 regulates K/NO translocation in the Arabidopsis response to low K stress[J]. The Plant Cell, 2019, 31(3):699-714.
DOI URL |
[34] |
Zhang X Q, Jiang H, Wang H, et al. Transcriptome analysis of rice seedling roots in response to potassium deficiency[J]. Scientific Reports, 2017, 7(1):5523.
DOI URL |
[35] |
Zhao X M, Liu Y, Liu X, et al. Comparative transcriptome profiling of two tomato genotypes in response to potassium-deficiency stress[J]. International Journal of Molecular Sciences, 2018, 19(8):2402-2426.
DOI URL |
[1] | LI Yan, YU Wencai, LU Qingzhi, YANG Shuguang, TIAN Weimin. Effects of Abiotic Stresses on the Expression of Heat Shock Transcription Factor (HSF) Family Members in Rubber Tree (Hevea brasiliensis Muell. Arg.) [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2119-2125. |
[2] | LIN Ping, WANG Mingyuan, LI Yuqing, LIU Jianfu, ZHANG Huaying, LIN Siduan. Identification of Banana TGA Transcription Factor Family and the Expression Analysis under Fusarium Wilt Infection [J]. Chinese Journal of Tropical Crops, 2021, 42(8): 2134-2142. |
[3] | JIN Longfei, YIN Xinxing, CAO Hongxing. Genome-wide Identification and Expression of EgGRF Gene Family in Oil Palm [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1817-1823. |
[4] | HUANG Xiaofang, BI Chuyun, WANG Heshou, CHEN Qijun, HU Yunzhuo, CHEN Xuanyang, LIN Shiqiang. Genome-wide Identification and Analysis of NAC Transcription Factor Family of Ipomoea batatas [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1831-1840. |
[5] | ZHANG Langzhi, LI Jifu, HUANG Jie, WANG Zhiyong, CHEN Zhijian. Cloning and Expression Analysis of AcMATE1 in Axonopus compressus [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 1860-1867. |
[6] | LI Mu, CAI Yuanbao, YANG Xiangyan, HUANG Sijie, LI Jidong, TAN Qinliang, QIU Wenwu, FANG Weikuan. Cloning and Expression Analysis of MYB Gene AcoMYB1 in Pineapple (Ananas comosus) [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1209-1215. |
[7] | JIA Liqiang, ZHAO Qiufang, CHEN Shu. Expression Profiling of Eight ZmDOFs Genes Responding to Abiotic Stresses in Maize [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1237-1244. |
[8] | WU Fugui, LIU Huifang, NIE Jiajun, WEI Yunfei, MA Qilin. Transcriptome Analysis of Young Spikes in Rice under Salt Stress [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1274-1281. |
[9] | YANG Jingyuan, RUAN Mengbin, GUO Xin, PENG Ming. Characterization and Function Analysis of Cassava MYB Transcription Factor MeMYB2 [J]. Chinese Journal of Tropical Crops, 2021, 42(4): 936-944. |
[10] | JIANG Suhua, NIU Suyan, YUAN Xiuyun, LIANG Fang, WANG Ximeng, CUI Bo. Mining Analysis of MYB Transcription Factors Related to Flavonoid Biosynthesis of Sedirea japonica [J]. Chinese Journal of Tropical Crops, 2021, 42(3): 629-636. |
[11] | HONG Keqian, GU Hui, CHEN Li. Expression Analysis of MaWRKY1 Factor in Inducing Chilling Resistance of Banana Fruits and Seedlings [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 303-309. |
[12] | TAN Qinliang, CAI Yuanbao, YANG Xiangyan, LI Mu, LI Jidong, HUANG Sijie, CHEN Qin, PANG Xinhua, ZHU Pengjin, ZHOU Quanguang. Bioinformatics and Expression Analysis of a NAC Transcription Factor Gene AcoNAC1 in Ananas comosus [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 310-316. |
[13] | LIANG Xiao, CHEN Qing, WU Chunling, FANG Yongjun. RNAi Based Function Study of Transcription Factor Nrf2 of Eotetranychus sexmaculatus in Regulating Antioxidant Enzymes [J]. Chinese Journal of Tropical Crops, 2021, 42(2): 503-511. |
[14] | LIANG Xiao, CHEN Qing, WU Chunling, FANG Yongjun. Selection of Reference Genes for Transcription Analysis of Eotetranychus sexmaculatus Superoxide Dismutase Gene EsSOD [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 175-181. |
[15] | XIAO Tujian,MA Yuhua,YUAN Qifeng,XIE Pu,MAO Yongya,YAN Jiawen,LIAO Shiqin. Molecular Cloning and Expression Analysis of Rhythms Clock Output Gene HpGI from Hylocereus polyrhizus [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1298-1304. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||