[1] |
王其超, 张行言. 中国荷花品种图志: 续志[M]. 北京: 中国建筑工业出版社, 1999.
|
[2] |
张行言, 陈龙清, 王其超. 中国荷花新品种图志[M]. 北京: 中国林业出版社, 2011.
|
[3] |
Fu J, Xiang Q, Zeng X B, et al. Assessment of the genetic diversity and population structure of lotus cultivars grown in China by amplified fragment length polymorphism[J]. Journal of American Society Horticultural Science, 2011,136:339-349.
DOI
URL
|
[4] |
Chen Y Y, Zhou R C, Lin X C, et al. ISSR analysis of genetic diversity in sacred lotus cultivars[J]. Aquatic Botany, 2008,89(3):311-316.
DOI
URL
|
[5] |
Hu J H, Pan L, Liu H G, et al. Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers[J]. Molecular Biology Reports, 2012,39(4):3637-3647.
DOI
URL
|
[6] |
Li Z, Liu X Q, Gituru R W, et al. Genetic diversity and classification of Nelumbo germplasm of different origins by RAPD and ISSR analysis[J]. Scientia Horticulturae, 2010,125(4):724-732.
DOI
URL
|
[7] |
Yang M, Han Y N, Xu L M, et al. Comparative analysis of genetic diversity of lotus (Nelumbo) using SSR and SRAP markers[J]. Scientia Horticulturae, 2012,142:185-195.
DOI
URL
|
[8] |
Ming R, VanBuren R, Liu Y L, et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.)[J]. Genome Biology, 2013,14(5):131-143.
DOI
URL
|
[9] |
Yang M, Han Y N, VanBuren R, et al. Genetic linkage maps for Asian and American lotus constructed using novel SSR markers derived from the genome of sequenced cultivar[J]. BMC Genomics, 2012,13(1):1471-2164.
|
[10] |
杜凤凤, 刘晓静, 常雅军, 等. 基于SSR标记的荷花品种遗传多样性及群体结构分析[J]. 植物资源与环境学报, 2016,25(1):9-16.
|
[11] |
杨郭阳. 荷花遗传连锁图谱的构建及株型相关性状QTLs分析[D]. 武汉: 华中农业大学, 2018.
|
[12] |
Yeh F C, Yang R C, Boyle T. Popgene Version 1.31 Quick User Guide[M]. Canada: University of Alberta, and Centre for International Forestry Research, 1999.
|
[13] |
Liu K, Muse S V. PowerMarker: An integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005,21(9):2128-2129.
DOI
URL
PMID
|
[14] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study[J]. Molecular Ecology, 2005,14(8):2611-2620.
DOI
URL
PMID
|
[15] |
Gaut B S, Long A D. The lowdown on linkage disequilibrium[J]. Plant Cell, 2003,15(7):1502-1506.
URL
PMID
|
[16] |
Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants[J]. Annual Review of Plant Biology, 2003,54:357-374.
DOI
URL
PMID
|
[17] |
Bradbury P J, Zhang Z W, Kroon D E, et al. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007,23(19):2633-2635.
DOI
URL
PMID
|
[18] |
Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J]. Genetics, 2000,155(2):945-959.
URL
PMID
|
[19] |
Gawenda I, Schrder-Lorenz A, Debener T. Markers for ornamental traits in Phalaenopsis orchids: Population structure, linkage disequilibrium and association mapping[J]. Molecular Breeding, 2012,30(1):305-316.
DOI
URL
|
[20] |
Song B H, Windsor A J, Schmid K J, et al. Multilocus patterns of nucleotide diversity, population structure and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis[J]. Genetics, 2009,181(3):1021-1033.
DOI
URL
PMID
|
[21] |
Zhang F, Ge Y Y, Wang W Y, et al. Genetic diversity and population structure of cultivated bromeliad accessions assessed by SRAP markers[J]. Scientia Horticulturae, 2012,141:1-6.
DOI
URL
|
[22] |
Yang M, Zhu L, Xu L, et al. Population structure and association mapping of flower-related traits in lotus (Nelumbo Adans.) accessions[J]. Scientia Horticulturae, 2014,175:214-222.
DOI
URL
|