Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (7): 1354-1365.DOI: 10.3969/j.issn.1000-2561.2020.07.010
• Plant Cultivation, Physiology & Biochemistry • Previous Articles Next Articles
XU Xia1,2,3,GOU Yonggang1,2,3,LUO Shasha1,2,3,WANG Yushu1,2,3,YU Lingling1,2,3,*(),WANG Jianwu1,2,3,*(
)
Received:
2019-10-16
Revised:
2019-11-19
Online:
2020-07-25
Published:
2020-08-24
Contact:
YU Lingling,WANG Jianwu
CLC Number:
XU Xia,GOU Yonggang,LUO Shasha,WANG Yushu,YU Lingling,WANG Jianwu. Effect of Nitrogen Reduction on Yield Stability of Sugarcane-Soybean Intercropping System[J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1354-1365.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.07.010
处理 Treatment | 施氮水平 Nitrogen rate/ (kg·hm-2) | 种植模式 Cropping pattern |
---|---|---|
MS-N1 | 300 | 单作甘蔗 |
SB1-N1 | 300 | 甘蔗//大豆(1∶1) |
SB2-N1 | 300 | 甘蔗//大豆(1∶2) |
MS-N2 | 525 | 单作甘蔗 |
SB1-N2 | 525 | 甘蔗//大豆(1∶1) |
SB2-N2 | 525 | 甘蔗//大豆(1∶2) |
MB | 0 | 单作大豆 |
Tab. 1 Field experiment design of sugarcane-soybean intercropping
处理 Treatment | 施氮水平 Nitrogen rate/ (kg·hm-2) | 种植模式 Cropping pattern |
---|---|---|
MS-N1 | 300 | 单作甘蔗 |
SB1-N1 | 300 | 甘蔗//大豆(1∶1) |
SB2-N1 | 300 | 甘蔗//大豆(1∶2) |
MS-N2 | 525 | 单作甘蔗 |
SB1-N2 | 525 | 甘蔗//大豆(1∶1) |
SB2-N2 | 525 | 甘蔗//大豆(1∶2) |
MB | 0 | 单作大豆 |
变异来源 Sources of variation | 甘蔗Sugarcane | 大豆Soybean | 系统总产量 Total yield | |||
---|---|---|---|---|---|---|
df | F | df | F | df | F | |
年限(Y) | 9 | 22.017*** | 9 | 31.104*** | 9 | 16.387*** |
施氮量(N) | 1 | 2.819 | 1 | 3.096 | 1 | 3.948* |
种植模式(C) | 2 | 7.540*** | 1 | 219.687*** | 2 | 0.867 |
Y×N | 9 | 0.402 | 9 | 0.393 | 9 | 0.499 |
Y×C | 18 | 0.916 | 9 | 1.726 | 18 | 1.158 |
N×C | 2 | 0.803 | 1 | 5.484* | 2 | 1.351 |
Y×N×C | 18 | 1.048 | 9 | 1.075 | 18 | 1.287 |
Tab. 2 Three way analysis of sugarcane, soybean and system yield of sugarcane-soybean intercropping systems from 2009 to 2018
变异来源 Sources of variation | 甘蔗Sugarcane | 大豆Soybean | 系统总产量 Total yield | |||
---|---|---|---|---|---|---|
df | F | df | F | df | F | |
年限(Y) | 9 | 22.017*** | 9 | 31.104*** | 9 | 16.387*** |
施氮量(N) | 1 | 2.819 | 1 | 3.096 | 1 | 3.948* |
种植模式(C) | 2 | 7.540*** | 1 | 219.687*** | 2 | 0.867 |
Y×N | 9 | 0.402 | 9 | 0.393 | 9 | 0.499 |
Y×C | 18 | 0.916 | 9 | 1.726 | 18 | 1.158 |
N×C | 2 | 0.803 | 1 | 5.484* | 2 | 1.351 |
Y×N×C | 18 | 1.048 | 9 | 1.075 | 18 | 1.287 |
处理 Treatment | 年份Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
SB1-N1 | 1.35±0.05b | 1.09±0.10b | 1.30±0.06b | 1.17±0.07b | 1.12±0.06b | 1.28±0.03b | 1.51±0.08ab | 1.52±0.11b | 1.49±0.08b | 1.65±0.09b |
SB2-N1 | 1.75±0.14a | 1.42±0.05a | 1.81±0.08a | 1.53±0.04a | 1.49±0.06a | 1.53±0.03a | 1.78±0.11a | 1.90±0.06a | 1.75±0.08a | 1.96±0.05a |
SB1-N2 | 1.13±0.02b | 1.19±0.07b | 1.43±0.11b | 1.31±0.05b | 1.18±0.05b | 1.20±0.05b | 1.39±0.09b | 1.56±0.07b | 1.51±0.09b | 1.63±0.02b |
SB2-N2 | 1.27±0.07b | 1.45±0.11a | 1.71±0.06a | 1.26±0.05b | 1.46±0.12a | 1.35±0.12ab | 1.53±0.03ab | 1.97±0.08a | 1.93±0.04a | 1.81±0.04ab |
双因素方差分析Two-way analysis of variance | ||||||||||
施氮量(N) | 17.22** | 0.57 | 0.02 | 1.56 | 0.043 | 3.50 | 4.92 | 0.42 | 1.94 | 2.66 |
种植模式(C) | 10.53* | 12.26** | 23.33** | 8.15* | 19.08** | 8.58* | 6.41* | 23.77** | 22.33** | 20.00** |
N×C | 2.37 | 0.15 | 1.96 | 14.86** | 0.49 | 0.64 | 0.70 | 0.02 | 0.29 | 1.32 |
Tab. 3 Land equivalent ratios (LER) from 2009 to 2018 in different treatment
处理 Treatment | 年份Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
SB1-N1 | 1.35±0.05b | 1.09±0.10b | 1.30±0.06b | 1.17±0.07b | 1.12±0.06b | 1.28±0.03b | 1.51±0.08ab | 1.52±0.11b | 1.49±0.08b | 1.65±0.09b |
SB2-N1 | 1.75±0.14a | 1.42±0.05a | 1.81±0.08a | 1.53±0.04a | 1.49±0.06a | 1.53±0.03a | 1.78±0.11a | 1.90±0.06a | 1.75±0.08a | 1.96±0.05a |
SB1-N2 | 1.13±0.02b | 1.19±0.07b | 1.43±0.11b | 1.31±0.05b | 1.18±0.05b | 1.20±0.05b | 1.39±0.09b | 1.56±0.07b | 1.51±0.09b | 1.63±0.02b |
SB2-N2 | 1.27±0.07b | 1.45±0.11a | 1.71±0.06a | 1.26±0.05b | 1.46±0.12a | 1.35±0.12ab | 1.53±0.03ab | 1.97±0.08a | 1.93±0.04a | 1.81±0.04ab |
双因素方差分析Two-way analysis of variance | ||||||||||
施氮量(N) | 17.22** | 0.57 | 0.02 | 1.56 | 0.043 | 3.50 | 4.92 | 0.42 | 1.94 | 2.66 |
种植模式(C) | 10.53* | 12.26** | 23.33** | 8.15* | 19.08** | 8.58* | 6.41* | 23.77** | 22.33** | 20.00** |
N×C | 2.37 | 0.15 | 1.96 | 14.86** | 0.49 | 0.64 | 0.70 | 0.02 | 0.29 | 1.32 |
作物 Crop | 处理 Treatment | 平均产量 Average yield (t·hm-2) | Wi2 | CV | SYI |
---|---|---|---|---|---|
甘蔗 | MS-N1 | 111.02±7.02a | 1214.37±301.57a | 0.14±0.011a | 0.75±0.04a |
SB1-N1 | 105.88±3.21a | 932.41±166.26a | 0.17±0.026a | 0.69±0.04ab | |
SB2-N1 | 105.04±3.26a | 971.77±549.71a | 0.17±0.032a | 0.64±0.01b | |
MS-N2 | 110.17±2.23a | 1187.05±309.67a | 0.17±0.016a | 0.64±0.02b | |
SB1-N2 | 106.71±2.35a | 762.01±67.68a | 0.16±0.013a | 0.70±0.02ab | |
SB2-N2 | 98.62±4.79a | 1246.29±448.72a | 0.17±0.0077a | 0.68±0.04ab | |
大豆 | SB1-N1 | 3.50±0.17c | 5.71±1.31b | 0.35±0.03a | 0.44±0.03a |
SB2-N1 | 6.70±0.23b | 7.74±0.30b | 0.27±0.03a | 0.53±0.02a | |
SB1-N2 | 3.61±0.17c | 5.03±0.63b | 0.34±0.05a | 0.46±0.06a | |
SB2-N2 | 5.94±0.39b | 13.42±2.06b | 0.35±0.03a | 0.43±0.04a | |
MB | 9.26±0.20a | 49.03±9.44a | 0.31±0.05a | 0.43±0.03a | |
系统总产量 | MS-N1 | 111.02±7.02a | 1218.32±208.68a | 0.14±0.01b | 0.75±0.04a |
SB1-N1 | 109.38±3.08a | 1025.18±140.051a | 0.17±0.02b | 0.70±0.03ab | |
SB2-N1 | 111.75±3.32a | 1102.66±737.84a | 0.16±0.03b | 0.65±0.01b | |
MS-N2 | 110.17±2.23a | 1240.69±316.03a | 0.17±0.02b | 0.64±0.02b | |
SB1-N2 | 107.31±2.24a | 801.62±44.86a | 0.15±0.01b | 0.64±0.02b | |
SB2-N2 | 104.56±4.56a | 1182.89±419.81a | 0.16±0.004b | 0.70±0.03ab | |
MB | 9.26±0.20b | 1182.72±60.82a | 0.31±0.05a | 0.43±0.03c |
Tab. 4 Yields and yield stability analysis of sugarcane, soybean and system of sugarcane//soybean intercropping system from 2009 to 2018
作物 Crop | 处理 Treatment | 平均产量 Average yield (t·hm-2) | Wi2 | CV | SYI |
---|---|---|---|---|---|
甘蔗 | MS-N1 | 111.02±7.02a | 1214.37±301.57a | 0.14±0.011a | 0.75±0.04a |
SB1-N1 | 105.88±3.21a | 932.41±166.26a | 0.17±0.026a | 0.69±0.04ab | |
SB2-N1 | 105.04±3.26a | 971.77±549.71a | 0.17±0.032a | 0.64±0.01b | |
MS-N2 | 110.17±2.23a | 1187.05±309.67a | 0.17±0.016a | 0.64±0.02b | |
SB1-N2 | 106.71±2.35a | 762.01±67.68a | 0.16±0.013a | 0.70±0.02ab | |
SB2-N2 | 98.62±4.79a | 1246.29±448.72a | 0.17±0.0077a | 0.68±0.04ab | |
大豆 | SB1-N1 | 3.50±0.17c | 5.71±1.31b | 0.35±0.03a | 0.44±0.03a |
SB2-N1 | 6.70±0.23b | 7.74±0.30b | 0.27±0.03a | 0.53±0.02a | |
SB1-N2 | 3.61±0.17c | 5.03±0.63b | 0.34±0.05a | 0.46±0.06a | |
SB2-N2 | 5.94±0.39b | 13.42±2.06b | 0.35±0.03a | 0.43±0.04a | |
MB | 9.26±0.20a | 49.03±9.44a | 0.31±0.05a | 0.43±0.03a | |
系统总产量 | MS-N1 | 111.02±7.02a | 1218.32±208.68a | 0.14±0.01b | 0.75±0.04a |
SB1-N1 | 109.38±3.08a | 1025.18±140.051a | 0.17±0.02b | 0.70±0.03ab | |
SB2-N1 | 111.75±3.32a | 1102.66±737.84a | 0.16±0.03b | 0.65±0.01b | |
MS-N2 | 110.17±2.23a | 1240.69±316.03a | 0.17±0.02b | 0.64±0.02b | |
SB1-N2 | 107.31±2.24a | 801.62±44.86a | 0.15±0.01b | 0.64±0.02b | |
SB2-N2 | 104.56±4.56a | 1182.89±419.81a | 0.16±0.004b | 0.70±0.03ab | |
MB | 9.26±0.20b | 1182.72±60.82a | 0.31±0.05a | 0.43±0.03c |
Fig. 3 Sugarcane quality from 2009 to 2016 in different treatment (bagasse) Different lowercase letters above the bar indicate significant difference at the 0.05 level using Duncan’s test.
Fig. 4 Sugarcane quality from 2009 to 2016 in different treatment (sugarcane juice) Different lowercase letters above the bar indicate significant difference at the 0.05 level using Duncan’s test
处理-年份 Treatment -year | pH | 有机质 Orgnic matter /(g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 全磷 Total phosphorus/(g·kg-1) | 全钾 Total potassium/(g·kg-1) | 碱解氮 Alkaline nitrogen /(mg·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
MS-N1-2010 | 5.93±0.08b | 14.84±0.87a | 1.09±0.06ab | 0.81±0.14a | 24.29±0.31a | 81.20±10.34abcd | 66.67±12.50cde | 30.91±5.76b |
MS-N2-2010 | 5.89±0.02b | 15.93±0.73a | 1.08±0.04ab | 0.79±0.02a | 23.35±0.13a | 76.92±4.52bcdef | 64.27±1.35de | 33.66±2.15b |
SB1-N1-2010 | 5.76±0.08b | 15.96±0.72a | 1.06±0.02ab | 0.94±0.12a | 24.45±0.01a | 96.11±2.71a | 79.00±9.64bcde | 32.44±3.54b |
SB1-N2-2010 | 5.85±0.07b | 14.16±2.19ab | 1.05±0.07ab | 0.71±0.18a | 23.60±0.86a | 78.35±7.22abcde | 55.40±22.15e | 34.18±3.57b |
SB2-N1-2010 | 6.02±0.15b | 15.61±1.84a | 1.14±0.08a | 0.83±0.14a | 22.47±0.78ab | 88.32±3.02abc | 66.73±7.87cde | 36.81±8.55b |
SB2-N2-2010 | 5.71±0.11b | 16.85±1.13a | 1.11±0.05a | 0.85±0.04a | 23.69±0.81a | 89.84±2.84ab | 73.40±5.57bcde | 36.93±2.77b |
MB-2010 | 6.54±0.06a | 15.72±0.58a | 0.93±0.08b | 0.94±0.11a | 20.28±1.18bcd | 52.33±5.04g | 94.29±6.48abcd | 83.92±9.96a |
MS-N1-2018 | 5.19±0.20c | 10.75±1.28b | 0.50±0.03c | 0.80±0.03a | 19.45±0.92cd | 61.06±5.66efg | 92.40±6.30abcd | 38.12±7.01b |
MS-N2-2018 | 5.05±0.07cd | 11.26±0.59b | 0.54±0.06c | 0.81±0.04a | 20.16±0.76bcd | 58.90±2.69fg | 99.87±6.82abc | 31.82±5.97b |
SB1-N1-2018 | 4.62±0.12c | 11.22±1.11b | 0.57±0.04c | 0.75±0.03a | 19.11±0.66cd | 70.98±6.08cdefg | 105.67±1.85ab | 23.41±1.67b |
SB1-N2-2018 | 4.61±0.06c | 10.72±0.64b | 0.54±0.08c | 0.82±0.13a | 21.74±1.55abc | 73.57±11.19bcdef | 117.00±19.61a | 20.66±3.37b |
SB2-N1-2018 | 5.14±0.21c | 11.46±0.20b | 0.55±0.04c | 0.83±0.06a | 19.96±0.94bcd | 62.14±0.65efg | 98.33±10.03abc | 32.90±3.38b |
SB2-N2-2018 | 4.75±0.23cd | 11.40±0.45b | 0.50±0.03c | 0.76±0.06a | 19.38±0.60cd | 66.45±3.84defg | 104.33±3.27ab | 21.91±2.81b |
MB-2018 | 6.19±0.28ab | 14.84±0.87a | 0.63±0.04c | 0.80±0.04a | 18.11±1.63d | 64.73±1.98defg | 52.87±1.62e | 29.25±3.45b |
Tab. 5 Soil nutrient content of different treatments in 2010 and 2018 after sugarcane harvest
处理-年份 Treatment -year | pH | 有机质 Orgnic matter /(g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 全磷 Total phosphorus/(g·kg-1) | 全钾 Total potassium/(g·kg-1) | 碱解氮 Alkaline nitrogen /(mg·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
MS-N1-2010 | 5.93±0.08b | 14.84±0.87a | 1.09±0.06ab | 0.81±0.14a | 24.29±0.31a | 81.20±10.34abcd | 66.67±12.50cde | 30.91±5.76b |
MS-N2-2010 | 5.89±0.02b | 15.93±0.73a | 1.08±0.04ab | 0.79±0.02a | 23.35±0.13a | 76.92±4.52bcdef | 64.27±1.35de | 33.66±2.15b |
SB1-N1-2010 | 5.76±0.08b | 15.96±0.72a | 1.06±0.02ab | 0.94±0.12a | 24.45±0.01a | 96.11±2.71a | 79.00±9.64bcde | 32.44±3.54b |
SB1-N2-2010 | 5.85±0.07b | 14.16±2.19ab | 1.05±0.07ab | 0.71±0.18a | 23.60±0.86a | 78.35±7.22abcde | 55.40±22.15e | 34.18±3.57b |
SB2-N1-2010 | 6.02±0.15b | 15.61±1.84a | 1.14±0.08a | 0.83±0.14a | 22.47±0.78ab | 88.32±3.02abc | 66.73±7.87cde | 36.81±8.55b |
SB2-N2-2010 | 5.71±0.11b | 16.85±1.13a | 1.11±0.05a | 0.85±0.04a | 23.69±0.81a | 89.84±2.84ab | 73.40±5.57bcde | 36.93±2.77b |
MB-2010 | 6.54±0.06a | 15.72±0.58a | 0.93±0.08b | 0.94±0.11a | 20.28±1.18bcd | 52.33±5.04g | 94.29±6.48abcd | 83.92±9.96a |
MS-N1-2018 | 5.19±0.20c | 10.75±1.28b | 0.50±0.03c | 0.80±0.03a | 19.45±0.92cd | 61.06±5.66efg | 92.40±6.30abcd | 38.12±7.01b |
MS-N2-2018 | 5.05±0.07cd | 11.26±0.59b | 0.54±0.06c | 0.81±0.04a | 20.16±0.76bcd | 58.90±2.69fg | 99.87±6.82abc | 31.82±5.97b |
SB1-N1-2018 | 4.62±0.12c | 11.22±1.11b | 0.57±0.04c | 0.75±0.03a | 19.11±0.66cd | 70.98±6.08cdefg | 105.67±1.85ab | 23.41±1.67b |
SB1-N2-2018 | 4.61±0.06c | 10.72±0.64b | 0.54±0.08c | 0.82±0.13a | 21.74±1.55abc | 73.57±11.19bcdef | 117.00±19.61a | 20.66±3.37b |
SB2-N1-2018 | 5.14±0.21c | 11.46±0.20b | 0.55±0.04c | 0.83±0.06a | 19.96±0.94bcd | 62.14±0.65efg | 98.33±10.03abc | 32.90±3.38b |
SB2-N2-2018 | 4.75±0.23cd | 11.40±0.45b | 0.50±0.03c | 0.76±0.06a | 19.38±0.60cd | 66.45±3.84defg | 104.33±3.27ab | 21.91±2.81b |
MB-2018 | 6.19±0.28ab | 14.84±0.87a | 0.63±0.04c | 0.80±0.04a | 18.11±1.63d | 64.73±1.98defg | 52.87±1.62e | 29.25±3.45b |
[1] | Food and Agriculture Organization of the United Nations. FAOSTAT(2016) [DB/OL]. [ 2019- 05- 02]. http://www.fao. org/faostat/en/# data/QC. |
[2] | 崔奇峰, 蒋和平, 周宁. 中国糖料作物生产的地区比较优势分析——基于1995—2009年糖料作物生产数据[J]. 农业经济, 2012(1):38-40. |
[3] | 王学清, 张静. 中国甘蔗产业支持政策及相关发展思路[J]. 农业展望, 2018,14(1):43-48, 53 |
[4] | 李杨瑞. 现代甘蔗学[M]. 北京: 中国农业出版社, 2010: 230-231. |
[5] | 谢金兰, 李长宁, 何为中, 等. 甘蔗化肥减量增效的栽培技术[J]. 中国糖料, 2017,39(1):38-41. |
[6] |
Robinson N, Brackin R, Vinall K, et al. Nitrate paradigm does not hold up for sugarcane[J]. PLoS One, 2011,6(4):e19045.
DOI URL PMID |
[7] | 江永. 降低甘蔗生产成本, 提高我国甘蔗产业竞争力[J]. 甘蔗糖业, 2010(6):44-50. |
[8] | 谭宏伟, 周柳强, 谢如林, 等. 红壤区不同施肥处理对蔗区土壤酸化及甘蔗产量的影响[J]. 热带作物学报, 2014,35(7):1290-1295. |
[9] | 熬俊华, 江永, 黄振瑞, 等. 加强甘蔗养分管理, 降低甘蔗生产成本[J]. 广东农业科学, 2011,38(23):31-34. |
[10] |
区惠平, 周柳强, 黄金生, 等. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响[J]. 中国农业科学, 2018,51(10):1931-1939.
DOI URL |
[11] | 刀静梅, 郭家文, 崔雄维, 等. 不同供氮水平对甘蔗产量和品质的影响[J]. 中国糖料, 2011(2):22-23. |
[12] | 韦剑锋, 韦冬萍, 陈超君, 等. 不同施氮方式对甘蔗氮肥效率及氮素去向的影响[J]. 核农学报, 2013,27(2):213-218. |
[13] | Lu L S. Introduction to China's agriculture[M]. Chengdu: Sichuan Science and Technology Press, 1999: 98-106. |
[14] | 李志贤, 王建武, 杨文亭, 等. 广东省甜玉米/大豆间作模式的效益分析[J]. 中国生态农业学报, 2010,18(3):627-631. |
[15] | 韦贵剑, 梁景文, 陆文娟, 等. 甘蔗间种大豆最佳模式探讨[J]. 南方农业学报, 2013,44(1):49-53. |
[16] | 荆凡胜, 陈斌, 常怀艳, 等. 玉米//甘蔗对玉米蚜、甘蔗绵蚜及其天敌昆虫的影响[J]. 云南农业大学学报(自然科学版), 2017,32(3):432-441. |
[17] |
Kamruzzaman M, Hasanuzzaman M. Factors affecting profitability of sugarcane production as monoculture and as intercrop in selected areas of Bangladesh[J]. Bangladesh Journal of Agricultural Research, 2008,32(3):433-444.
DOI URL |
[18] | 陈道德, 吕达, 肖祎, 等. 甘蔗间套种植效应研究[J]. 甘蔗糖业, 2014(1):12-19. |
[19] | 敖俊华, 江永, 周文灵, 等. 甘蔗/大豆间作模式的生产力分析[J]. 广东农业科学, 2014,41(3):29-32. |
[20] | 李秀平, 李穆, 年海, 等. 甘蔗/大豆间作对甘蔗和大豆产量与品质的影响[J]. 东北农业大学学报, 2012,43(7):42-46. |
[21] | 黄绍富, 黄杰基. 蔗区土壤肥力现状与甘蔗测土配方施肥[J]. 广西蔗糖, 2006(4):10-12, 17. |
[22] | 车江旅, 吴建明, 宋焕忠. 甘蔗间套种大豆研究进展[J]. 南方农业学报, 2011,42(8):898-900. |
[23] | 唐红琴, 汪淼, 方锋学, 等. 我国甘蔗间种不同作物的研究进展[J]. 中国糖料, 2012(4):65-69, 78. |
[24] | 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016,24(4):403-415. |
[25] | 刘培, 邵宇婷, 王志国, 等. 减氮对华南地区甜玉米//大豆系统产量稳定性的影响[J]. 中国生态农业学报, 2019,27(9):1332-1343. |
[26] | 李志贤, 王建武, 杨文亭, 等. 甘蔗/大豆间作减量施氮对甘蔗产量、品质及经济效益的影响[J]. 应用生态学报, 2011,22(3):713-719. |
[27] |
杨文亭, 李志贤, 赖健宁, 等. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响[J]. 作物学报, 2014,40(3):556-562.
DOI URL |
[28] | 杨文亭, 李志贤, 冯远娇, 等. 甘蔗-大豆间作对大豆鲜荚产量和农艺性状的影响[J]. 生态学杂志, 2012,31(3):577-582. |
[29] |
Yang W T, Li Z X, Wang J W, et al. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application[J]. Field Crops Research, 2013,146:44-50.
DOI URL |
[30] | 杨文亭, 李志贤, 舒磊, 等. 甘蔗//大豆间作和减量施氮对甘蔗产量、植株及土壤氮素的影响[J]. 生态学报, 2011,31(20):6108-6115. |
[31] |
Luo S S, Yu L L, Liu Y, et al. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/ soybean intercropping system[J]. European Journal of Agronomy, 2016,81:78-85.
DOI URL |
[32] | 章莹, 王建武, 王蕾, 等. 减量施氮与大豆间作对蔗田土壤温室气体排放的影响[J]. 中国生态农业学报, 2013,21(11):1318-1327. |
[33] | 管奥湄, 章莹, 刘宇, 等. 减量施氮与间作大豆对蔗田碳平衡特征的影响[J]. 中国生态农业学报, 2016,24(4):478-488. |
[34] |
Tariah N M, Wahua T A T. Effects of component populations on yields and land equivalent ratios of intercropped maize and cowpea[J]. Field Crops Research, 1985,12:81-89.
DOI URL |
[35] | Wricke G. Uber eine methode zur erfassung der okologischen streubreite in feldversucen[J]. Zeitschrift Fur Pflanzenzuchtung-Journal of Plant Breeding, 1962,47:92-96. |
[36] |
Damodar R D, Subba R A, Sammi R K, et al. Yield sustainability and phosphorus utilization in soybean-wheat system on vertisols in response to integrated use of manure and fertilizer phosphorus[J]. Field Crops Research, 1999,62(2):181-190.
DOI URL |
[37] |
Francis T R, Kannenberg L W. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes[J]. Canadian Journal of Plant Science, 1978,58(4):1029-1034.
DOI URL |
[38] | 广东省甘蔗糖业食品科学研究所. 甘蔗制糖化学管理分析方法[M]. 北京: 中国轻工业出版社, 1974. |
[39] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 49-83. |
[40] | 孟维伟, 高华鑫, 张正, 等. 不同玉米花生间作模式对系统产量及土地当量比的影响[J]. 山东农业科学, 2016,48(12):32-36. |
[41] |
Fan F L, Zhang F S, Song Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant Soil, 2006,283, 275-286.
DOI URL |
[42] | 肖焱波, 李隆, 张福锁. 豆科//禾本科间作系统中氮营养研究进展[J]. 中国农业科技导报, 2003(6):44-49. |
[43] |
Hauggaard-N H, Ambus P, Jensen E S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley[J]. Nutrient Cycling in Agroecosystems, 2003,65(3):289-300.
DOI URL |
[44] |
Li X P, Mu Y H, Cheng Y B, et al. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability[J]. Acta Physiologiae Plantarum, 2013,35(4):1113-1119.
DOI URL |
[45] |
Berzsenyi Z, Győrffy B, Lap D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment[J]. European Journal of Agronomy, 2000,13(2):225-244.
DOI URL |
[46] |
Stelluti M, Caliandro A, Stellacci A M. Influence of previous crop on durum wheat yield and yield stability in a long-term experiment[J]. Italian Journal of Agronomy, 2007,2(3):333-340.
DOI URL |
[47] | Wanjari R H, Singh M V, Ghosh P K. Sustainable yield index: An approach to evaluate the sustainability of long-term intensive cropping systems in India[J]. Journal of sustainable agriculture, 2004,24(4):39-56. |
[48] |
Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India[J]. Field Crops Research, 2005,93(2-3):264-280.
DOI URL |
[49] | 谢如林, 谭宏伟, 周柳强, 等. 不同氮磷施用量对甘蔗产量及氮肥、磷肥利用率的影响[J]. 西南农业学报, 2012,25(1):198-202. |
[50] | Jensen E S. Intercropping field bean with spring wheat[J]. Vorträge Für Pflanzenzüchtung, 1986,11:67-75. |
[51] | 杨建波, 彭东海, 覃刘东, 等. 低氮条件下甘蔗-大豆间作对甘蔗产量、品质及经济效益的影响[J]. 应用生态学报, 2015,26(5):1426-1432. |
[52] | 张跃彬, 樊仙, 刀静梅. 不同氮水平对甘蔗生长的影响[J]. 中国糖料, 2013(3):15-17. |
[1] | SUN Fengxia,WANG Xinyao,TANG Peng,WANG Xu,WU Shuhua,LI Chao,CHENG Yikang,REN Haotian. Growth and Soil Fertility Characteristics of Rubber Seedlings in Different Biogas Slurry Irrigation [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1918-1927. |
[2] | ZHAN Shan,YUAN Hong,DU Tiantian,REN Wei,KUANG Huiwu,SONG Hongfu,SHENG Hao. Effects of Buffering Ability to Acid and Alkali and Available Cadmium Content in Different Cadmium Reduction Treatments in Paddy Soil [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 225-229. |
[3] | LIU Bin,WANG Songbiao,LI Xin,SU Muqing,MA Haiyang,WU Hongxia,ZHOU Yigang,MA Xiaowei. Assessment of Soil Fertility in the Mango Orchards of Panzhihua, Sichuan, China [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 1-6. |
[4] | CHEN Yuqin,HU Yongliang,ZHANG Liping,YIN Hongxing,HUANG Jiawei,LI Shouling. Evaluation of Soil Fertility of Rubber Plantation in Dehong Based on Principal Component and Cluster Analysis [J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1461-1467. |
[5] | TAN Shibei,XI Jingen,ZHENG Jinlong,HE Chunping,WU Weihuai,LIANG Yanqiong,HUANG Xing,LI Rui,YI Kexian. Effects of Sisal Stalks Returned to the Field with Nitrogen Fertilizer on the Soil Fertility and Sisal Growth [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 839-849. |
[6] | ZHAO Mingzhu,WU Ting,TANG Jin,MA Guanrun,GUO Tieying,XIAO Ziwei,SU Linlin,ZHOU Hua,BAI Xuehui. Status Quo and Variation of Soil Fertility in Different Altitude of Coffea arabica L. [J]. Chinese Journal of Tropical Crops, 2019, 40(4): 629-637. |
[7] | WEI Zenghui,PAN Yunzhou,WANG Yuyang,WU Zhipeng,ZHU Zhiqiang,WU Weidong. Effects of Different Raw Material Organic Fertilizers on Soil Fertility and Wax Gourd Yield [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 232-237. |
[8] | YANG Shan ZHOU Hongkai XIE Ping CHEN Hanwen QIN Hailong YE Changhui. Effects of Water Saving Measures on Yield and Quality of Sugarcane in Dry Sloping Land [J]. Chinese Journal of Tropical Crops, 2016, 37(4): 647-652. |
[9] | YAN Yuekui GUO Pengtao LUO Wei. Establishing Precision Fertilization Formulas for Private Rubber Plantations of Danzhou County Based on Geographic Information System(GIS) [J]. Chinese Journal of Tropical Crops, 2014, 35(10): 2050-2058. |
[10] | YUAN Qifeng CAO Shuhong CAI Zhiquan GONG Hede FAN Guosheng WANG Shu. Effects of Different Preceding Crops on Soil Fertility of Plukenetia volubilis L. [J]. Chinese Journal of Tropical Crops, 2014, 35(1): 42-46. |
[11] | WEI Shouxing HUANG Lina XIE Zisi LI Zhiyang LIN Minxia LUO Shirong CHEN Yeyuan. Analysis for Soil Fertility and Recommendations for Fertilization of Main Aged Banana Gardens in Zhangzhou [J]. Chinese Journal of Tropical Crops, 2013, 34(12): 2331-2335. |
[12] | WEI Minzheng ZHENG Xu LI Weiliu XIONG Jun HUANG Weihua OU Hourong HE Li ZHOU Yunxin TANG Xiuhua DENG Yingyi QIN Weizhi YAN Haifeng XU Juan TANG Hualei. Effect of Application Anaerobic Liquid of Cassava Alcohol Fermentation on Banana Growth and Soil Fertility [J]. Chinese Journal of Tropical Crops, 2013, 34(11): 2112-2116. |
[13] | WEI Zhiyuan SUN Juan LI Songgang WANG Dengfeng QI Zhiping. Application of Grey System Theory in Evaluating Soil Fertility of Central and Western Hainan Lychee Orchard [J]. Chinese Journal of Tropical Crops, 2013, 34(10): 1883-1887. |
[14] | LIN Qinghuo LIN Zhaomu BEI Meirong ZHANG Peisong LUO Wei. Micro-scale Spatial Variance of Soil Fertility Indices in the Rubber PlantationⅠ: 0~20 cm Soil Layer [J]. Chinese Journal of Tropical Crops, 2012, 33(8): 1348-1353. |
[15] | WEI Shouxing XIE Zisi LI Zhiyang XIE Jianji LUO Shirong CHEN Yeyuan. Soil Fertility Investigation and Evaluation for Banana Gardens in Guangxi [J]. Chinese Journal of Tropical Crops, 2012, 33(8): 1371-1377. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||