Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (7): 1354-1365.DOI: 10.3969/j.issn.1000-2561.2020.07.010
• Plant Cultivation, Physiology & Biochemistry • Previous Articles Next Articles
XU Xia1,2,3,GOU Yonggang1,2,3,LUO Shasha1,2,3,WANG Yushu1,2,3,YU Lingling1,2,3,*(),WANG Jianwu1,2,3,*(
)
Received:
2019-10-16
Revised:
2019-11-19
Online:
2020-07-25
Published:
2020-08-24
Contact:
YU Lingling,WANG Jianwu
CLC Number:
XU Xia,GOU Yonggang,LUO Shasha,WANG Yushu,YU Lingling,WANG Jianwu. Effect of Nitrogen Reduction on Yield Stability of Sugarcane-Soybean Intercropping System[J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1354-1365.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.07.010
处理 Treatment | 施氮水平 Nitrogen rate/ (kg·hm-2) | 种植模式 Cropping pattern |
---|---|---|
MS-N1 | 300 | 单作甘蔗 |
SB1-N1 | 300 | 甘蔗//大豆(1∶1) |
SB2-N1 | 300 | 甘蔗//大豆(1∶2) |
MS-N2 | 525 | 单作甘蔗 |
SB1-N2 | 525 | 甘蔗//大豆(1∶1) |
SB2-N2 | 525 | 甘蔗//大豆(1∶2) |
MB | 0 | 单作大豆 |
Tab. 1 Field experiment design of sugarcane-soybean intercropping
处理 Treatment | 施氮水平 Nitrogen rate/ (kg·hm-2) | 种植模式 Cropping pattern |
---|---|---|
MS-N1 | 300 | 单作甘蔗 |
SB1-N1 | 300 | 甘蔗//大豆(1∶1) |
SB2-N1 | 300 | 甘蔗//大豆(1∶2) |
MS-N2 | 525 | 单作甘蔗 |
SB1-N2 | 525 | 甘蔗//大豆(1∶1) |
SB2-N2 | 525 | 甘蔗//大豆(1∶2) |
MB | 0 | 单作大豆 |
变异来源 Sources of variation | 甘蔗Sugarcane | 大豆Soybean | 系统总产量 Total yield | |||
---|---|---|---|---|---|---|
df | F | df | F | df | F | |
年限(Y) | 9 | 22.017*** | 9 | 31.104*** | 9 | 16.387*** |
施氮量(N) | 1 | 2.819 | 1 | 3.096 | 1 | 3.948* |
种植模式(C) | 2 | 7.540*** | 1 | 219.687*** | 2 | 0.867 |
Y×N | 9 | 0.402 | 9 | 0.393 | 9 | 0.499 |
Y×C | 18 | 0.916 | 9 | 1.726 | 18 | 1.158 |
N×C | 2 | 0.803 | 1 | 5.484* | 2 | 1.351 |
Y×N×C | 18 | 1.048 | 9 | 1.075 | 18 | 1.287 |
Tab. 2 Three way analysis of sugarcane, soybean and system yield of sugarcane-soybean intercropping systems from 2009 to 2018
变异来源 Sources of variation | 甘蔗Sugarcane | 大豆Soybean | 系统总产量 Total yield | |||
---|---|---|---|---|---|---|
df | F | df | F | df | F | |
年限(Y) | 9 | 22.017*** | 9 | 31.104*** | 9 | 16.387*** |
施氮量(N) | 1 | 2.819 | 1 | 3.096 | 1 | 3.948* |
种植模式(C) | 2 | 7.540*** | 1 | 219.687*** | 2 | 0.867 |
Y×N | 9 | 0.402 | 9 | 0.393 | 9 | 0.499 |
Y×C | 18 | 0.916 | 9 | 1.726 | 18 | 1.158 |
N×C | 2 | 0.803 | 1 | 5.484* | 2 | 1.351 |
Y×N×C | 18 | 1.048 | 9 | 1.075 | 18 | 1.287 |
处理 Treatment | 年份Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
SB1-N1 | 1.35±0.05b | 1.09±0.10b | 1.30±0.06b | 1.17±0.07b | 1.12±0.06b | 1.28±0.03b | 1.51±0.08ab | 1.52±0.11b | 1.49±0.08b | 1.65±0.09b |
SB2-N1 | 1.75±0.14a | 1.42±0.05a | 1.81±0.08a | 1.53±0.04a | 1.49±0.06a | 1.53±0.03a | 1.78±0.11a | 1.90±0.06a | 1.75±0.08a | 1.96±0.05a |
SB1-N2 | 1.13±0.02b | 1.19±0.07b | 1.43±0.11b | 1.31±0.05b | 1.18±0.05b | 1.20±0.05b | 1.39±0.09b | 1.56±0.07b | 1.51±0.09b | 1.63±0.02b |
SB2-N2 | 1.27±0.07b | 1.45±0.11a | 1.71±0.06a | 1.26±0.05b | 1.46±0.12a | 1.35±0.12ab | 1.53±0.03ab | 1.97±0.08a | 1.93±0.04a | 1.81±0.04ab |
双因素方差分析Two-way analysis of variance | ||||||||||
施氮量(N) | 17.22** | 0.57 | 0.02 | 1.56 | 0.043 | 3.50 | 4.92 | 0.42 | 1.94 | 2.66 |
种植模式(C) | 10.53* | 12.26** | 23.33** | 8.15* | 19.08** | 8.58* | 6.41* | 23.77** | 22.33** | 20.00** |
N×C | 2.37 | 0.15 | 1.96 | 14.86** | 0.49 | 0.64 | 0.70 | 0.02 | 0.29 | 1.32 |
Tab. 3 Land equivalent ratios (LER) from 2009 to 2018 in different treatment
处理 Treatment | 年份Year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
SB1-N1 | 1.35±0.05b | 1.09±0.10b | 1.30±0.06b | 1.17±0.07b | 1.12±0.06b | 1.28±0.03b | 1.51±0.08ab | 1.52±0.11b | 1.49±0.08b | 1.65±0.09b |
SB2-N1 | 1.75±0.14a | 1.42±0.05a | 1.81±0.08a | 1.53±0.04a | 1.49±0.06a | 1.53±0.03a | 1.78±0.11a | 1.90±0.06a | 1.75±0.08a | 1.96±0.05a |
SB1-N2 | 1.13±0.02b | 1.19±0.07b | 1.43±0.11b | 1.31±0.05b | 1.18±0.05b | 1.20±0.05b | 1.39±0.09b | 1.56±0.07b | 1.51±0.09b | 1.63±0.02b |
SB2-N2 | 1.27±0.07b | 1.45±0.11a | 1.71±0.06a | 1.26±0.05b | 1.46±0.12a | 1.35±0.12ab | 1.53±0.03ab | 1.97±0.08a | 1.93±0.04a | 1.81±0.04ab |
双因素方差分析Two-way analysis of variance | ||||||||||
施氮量(N) | 17.22** | 0.57 | 0.02 | 1.56 | 0.043 | 3.50 | 4.92 | 0.42 | 1.94 | 2.66 |
种植模式(C) | 10.53* | 12.26** | 23.33** | 8.15* | 19.08** | 8.58* | 6.41* | 23.77** | 22.33** | 20.00** |
N×C | 2.37 | 0.15 | 1.96 | 14.86** | 0.49 | 0.64 | 0.70 | 0.02 | 0.29 | 1.32 |
作物 Crop | 处理 Treatment | 平均产量 Average yield (t·hm-2) | Wi2 | CV | SYI |
---|---|---|---|---|---|
甘蔗 | MS-N1 | 111.02±7.02a | 1214.37±301.57a | 0.14±0.011a | 0.75±0.04a |
SB1-N1 | 105.88±3.21a | 932.41±166.26a | 0.17±0.026a | 0.69±0.04ab | |
SB2-N1 | 105.04±3.26a | 971.77±549.71a | 0.17±0.032a | 0.64±0.01b | |
MS-N2 | 110.17±2.23a | 1187.05±309.67a | 0.17±0.016a | 0.64±0.02b | |
SB1-N2 | 106.71±2.35a | 762.01±67.68a | 0.16±0.013a | 0.70±0.02ab | |
SB2-N2 | 98.62±4.79a | 1246.29±448.72a | 0.17±0.0077a | 0.68±0.04ab | |
大豆 | SB1-N1 | 3.50±0.17c | 5.71±1.31b | 0.35±0.03a | 0.44±0.03a |
SB2-N1 | 6.70±0.23b | 7.74±0.30b | 0.27±0.03a | 0.53±0.02a | |
SB1-N2 | 3.61±0.17c | 5.03±0.63b | 0.34±0.05a | 0.46±0.06a | |
SB2-N2 | 5.94±0.39b | 13.42±2.06b | 0.35±0.03a | 0.43±0.04a | |
MB | 9.26±0.20a | 49.03±9.44a | 0.31±0.05a | 0.43±0.03a | |
系统总产量 | MS-N1 | 111.02±7.02a | 1218.32±208.68a | 0.14±0.01b | 0.75±0.04a |
SB1-N1 | 109.38±3.08a | 1025.18±140.051a | 0.17±0.02b | 0.70±0.03ab | |
SB2-N1 | 111.75±3.32a | 1102.66±737.84a | 0.16±0.03b | 0.65±0.01b | |
MS-N2 | 110.17±2.23a | 1240.69±316.03a | 0.17±0.02b | 0.64±0.02b | |
SB1-N2 | 107.31±2.24a | 801.62±44.86a | 0.15±0.01b | 0.64±0.02b | |
SB2-N2 | 104.56±4.56a | 1182.89±419.81a | 0.16±0.004b | 0.70±0.03ab | |
MB | 9.26±0.20b | 1182.72±60.82a | 0.31±0.05a | 0.43±0.03c |
Tab. 4 Yields and yield stability analysis of sugarcane, soybean and system of sugarcane//soybean intercropping system from 2009 to 2018
作物 Crop | 处理 Treatment | 平均产量 Average yield (t·hm-2) | Wi2 | CV | SYI |
---|---|---|---|---|---|
甘蔗 | MS-N1 | 111.02±7.02a | 1214.37±301.57a | 0.14±0.011a | 0.75±0.04a |
SB1-N1 | 105.88±3.21a | 932.41±166.26a | 0.17±0.026a | 0.69±0.04ab | |
SB2-N1 | 105.04±3.26a | 971.77±549.71a | 0.17±0.032a | 0.64±0.01b | |
MS-N2 | 110.17±2.23a | 1187.05±309.67a | 0.17±0.016a | 0.64±0.02b | |
SB1-N2 | 106.71±2.35a | 762.01±67.68a | 0.16±0.013a | 0.70±0.02ab | |
SB2-N2 | 98.62±4.79a | 1246.29±448.72a | 0.17±0.0077a | 0.68±0.04ab | |
大豆 | SB1-N1 | 3.50±0.17c | 5.71±1.31b | 0.35±0.03a | 0.44±0.03a |
SB2-N1 | 6.70±0.23b | 7.74±0.30b | 0.27±0.03a | 0.53±0.02a | |
SB1-N2 | 3.61±0.17c | 5.03±0.63b | 0.34±0.05a | 0.46±0.06a | |
SB2-N2 | 5.94±0.39b | 13.42±2.06b | 0.35±0.03a | 0.43±0.04a | |
MB | 9.26±0.20a | 49.03±9.44a | 0.31±0.05a | 0.43±0.03a | |
系统总产量 | MS-N1 | 111.02±7.02a | 1218.32±208.68a | 0.14±0.01b | 0.75±0.04a |
SB1-N1 | 109.38±3.08a | 1025.18±140.051a | 0.17±0.02b | 0.70±0.03ab | |
SB2-N1 | 111.75±3.32a | 1102.66±737.84a | 0.16±0.03b | 0.65±0.01b | |
MS-N2 | 110.17±2.23a | 1240.69±316.03a | 0.17±0.02b | 0.64±0.02b | |
SB1-N2 | 107.31±2.24a | 801.62±44.86a | 0.15±0.01b | 0.64±0.02b | |
SB2-N2 | 104.56±4.56a | 1182.89±419.81a | 0.16±0.004b | 0.70±0.03ab | |
MB | 9.26±0.20b | 1182.72±60.82a | 0.31±0.05a | 0.43±0.03c |
Fig. 3 Sugarcane quality from 2009 to 2016 in different treatment (bagasse) Different lowercase letters above the bar indicate significant difference at the 0.05 level using Duncan’s test.
Fig. 4 Sugarcane quality from 2009 to 2016 in different treatment (sugarcane juice) Different lowercase letters above the bar indicate significant difference at the 0.05 level using Duncan’s test
处理-年份 Treatment -year | pH | 有机质 Orgnic matter /(g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 全磷 Total phosphorus/(g·kg-1) | 全钾 Total potassium/(g·kg-1) | 碱解氮 Alkaline nitrogen /(mg·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
MS-N1-2010 | 5.93±0.08b | 14.84±0.87a | 1.09±0.06ab | 0.81±0.14a | 24.29±0.31a | 81.20±10.34abcd | 66.67±12.50cde | 30.91±5.76b |
MS-N2-2010 | 5.89±0.02b | 15.93±0.73a | 1.08±0.04ab | 0.79±0.02a | 23.35±0.13a | 76.92±4.52bcdef | 64.27±1.35de | 33.66±2.15b |
SB1-N1-2010 | 5.76±0.08b | 15.96±0.72a | 1.06±0.02ab | 0.94±0.12a | 24.45±0.01a | 96.11±2.71a | 79.00±9.64bcde | 32.44±3.54b |
SB1-N2-2010 | 5.85±0.07b | 14.16±2.19ab | 1.05±0.07ab | 0.71±0.18a | 23.60±0.86a | 78.35±7.22abcde | 55.40±22.15e | 34.18±3.57b |
SB2-N1-2010 | 6.02±0.15b | 15.61±1.84a | 1.14±0.08a | 0.83±0.14a | 22.47±0.78ab | 88.32±3.02abc | 66.73±7.87cde | 36.81±8.55b |
SB2-N2-2010 | 5.71±0.11b | 16.85±1.13a | 1.11±0.05a | 0.85±0.04a | 23.69±0.81a | 89.84±2.84ab | 73.40±5.57bcde | 36.93±2.77b |
MB-2010 | 6.54±0.06a | 15.72±0.58a | 0.93±0.08b | 0.94±0.11a | 20.28±1.18bcd | 52.33±5.04g | 94.29±6.48abcd | 83.92±9.96a |
MS-N1-2018 | 5.19±0.20c | 10.75±1.28b | 0.50±0.03c | 0.80±0.03a | 19.45±0.92cd | 61.06±5.66efg | 92.40±6.30abcd | 38.12±7.01b |
MS-N2-2018 | 5.05±0.07cd | 11.26±0.59b | 0.54±0.06c | 0.81±0.04a | 20.16±0.76bcd | 58.90±2.69fg | 99.87±6.82abc | 31.82±5.97b |
SB1-N1-2018 | 4.62±0.12c | 11.22±1.11b | 0.57±0.04c | 0.75±0.03a | 19.11±0.66cd | 70.98±6.08cdefg | 105.67±1.85ab | 23.41±1.67b |
SB1-N2-2018 | 4.61±0.06c | 10.72±0.64b | 0.54±0.08c | 0.82±0.13a | 21.74±1.55abc | 73.57±11.19bcdef | 117.00±19.61a | 20.66±3.37b |
SB2-N1-2018 | 5.14±0.21c | 11.46±0.20b | 0.55±0.04c | 0.83±0.06a | 19.96±0.94bcd | 62.14±0.65efg | 98.33±10.03abc | 32.90±3.38b |
SB2-N2-2018 | 4.75±0.23cd | 11.40±0.45b | 0.50±0.03c | 0.76±0.06a | 19.38±0.60cd | 66.45±3.84defg | 104.33±3.27ab | 21.91±2.81b |
MB-2018 | 6.19±0.28ab | 14.84±0.87a | 0.63±0.04c | 0.80±0.04a | 18.11±1.63d | 64.73±1.98defg | 52.87±1.62e | 29.25±3.45b |
Tab. 5 Soil nutrient content of different treatments in 2010 and 2018 after sugarcane harvest
处理-年份 Treatment -year | pH | 有机质 Orgnic matter /(g·kg-1) | 全氮 Total nitrogen/(g·kg-1) | 全磷 Total phosphorus/(g·kg-1) | 全钾 Total potassium/(g·kg-1) | 碱解氮 Alkaline nitrogen /(mg·kg-1) | 有效磷 Available phosphorus/(mg·kg-1) | 速效钾 Available potassium/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
MS-N1-2010 | 5.93±0.08b | 14.84±0.87a | 1.09±0.06ab | 0.81±0.14a | 24.29±0.31a | 81.20±10.34abcd | 66.67±12.50cde | 30.91±5.76b |
MS-N2-2010 | 5.89±0.02b | 15.93±0.73a | 1.08±0.04ab | 0.79±0.02a | 23.35±0.13a | 76.92±4.52bcdef | 64.27±1.35de | 33.66±2.15b |
SB1-N1-2010 | 5.76±0.08b | 15.96±0.72a | 1.06±0.02ab | 0.94±0.12a | 24.45±0.01a | 96.11±2.71a | 79.00±9.64bcde | 32.44±3.54b |
SB1-N2-2010 | 5.85±0.07b | 14.16±2.19ab | 1.05±0.07ab | 0.71±0.18a | 23.60±0.86a | 78.35±7.22abcde | 55.40±22.15e | 34.18±3.57b |
SB2-N1-2010 | 6.02±0.15b | 15.61±1.84a | 1.14±0.08a | 0.83±0.14a | 22.47±0.78ab | 88.32±3.02abc | 66.73±7.87cde | 36.81±8.55b |
SB2-N2-2010 | 5.71±0.11b | 16.85±1.13a | 1.11±0.05a | 0.85±0.04a | 23.69±0.81a | 89.84±2.84ab | 73.40±5.57bcde | 36.93±2.77b |
MB-2010 | 6.54±0.06a | 15.72±0.58a | 0.93±0.08b | 0.94±0.11a | 20.28±1.18bcd | 52.33±5.04g | 94.29±6.48abcd | 83.92±9.96a |
MS-N1-2018 | 5.19±0.20c | 10.75±1.28b | 0.50±0.03c | 0.80±0.03a | 19.45±0.92cd | 61.06±5.66efg | 92.40±6.30abcd | 38.12±7.01b |
MS-N2-2018 | 5.05±0.07cd | 11.26±0.59b | 0.54±0.06c | 0.81±0.04a | 20.16±0.76bcd | 58.90±2.69fg | 99.87±6.82abc | 31.82±5.97b |
SB1-N1-2018 | 4.62±0.12c | 11.22±1.11b | 0.57±0.04c | 0.75±0.03a | 19.11±0.66cd | 70.98±6.08cdefg | 105.67±1.85ab | 23.41±1.67b |
SB1-N2-2018 | 4.61±0.06c | 10.72±0.64b | 0.54±0.08c | 0.82±0.13a | 21.74±1.55abc | 73.57±11.19bcdef | 117.00±19.61a | 20.66±3.37b |
SB2-N1-2018 | 5.14±0.21c | 11.46±0.20b | 0.55±0.04c | 0.83±0.06a | 19.96±0.94bcd | 62.14±0.65efg | 98.33±10.03abc | 32.90±3.38b |
SB2-N2-2018 | 4.75±0.23cd | 11.40±0.45b | 0.50±0.03c | 0.76±0.06a | 19.38±0.60cd | 66.45±3.84defg | 104.33±3.27ab | 21.91±2.81b |
MB-2018 | 6.19±0.28ab | 14.84±0.87a | 0.63±0.04c | 0.80±0.04a | 18.11±1.63d | 64.73±1.98defg | 52.87±1.62e | 29.25±3.45b |
[1] | Food and Agriculture Organization of the United Nations. FAOSTAT(2016) [DB/OL]. [ 2019- 05- 02]. http://www.fao. org/faostat/en/# data/QC. |
[2] | 崔奇峰, 蒋和平, 周宁. 中国糖料作物生产的地区比较优势分析——基于1995—2009年糖料作物生产数据[J]. 农业经济, 2012(1):38-40. |
[3] | 王学清, 张静. 中国甘蔗产业支持政策及相关发展思路[J]. 农业展望, 2018,14(1):43-48, 53 |
[4] | 李杨瑞. 现代甘蔗学[M]. 北京: 中国农业出版社, 2010: 230-231. |
[5] | 谢金兰, 李长宁, 何为中, 等. 甘蔗化肥减量增效的栽培技术[J]. 中国糖料, 2017,39(1):38-41. |
[6] |
Robinson N, Brackin R, Vinall K, et al. Nitrate paradigm does not hold up for sugarcane[J]. PLoS One, 2011,6(4):e19045.
DOI URL PMID |
[7] | 江永. 降低甘蔗生产成本, 提高我国甘蔗产业竞争力[J]. 甘蔗糖业, 2010(6):44-50. |
[8] | 谭宏伟, 周柳强, 谢如林, 等. 红壤区不同施肥处理对蔗区土壤酸化及甘蔗产量的影响[J]. 热带作物学报, 2014,35(7):1290-1295. |
[9] | 熬俊华, 江永, 黄振瑞, 等. 加强甘蔗养分管理, 降低甘蔗生产成本[J]. 广东农业科学, 2011,38(23):31-34. |
[10] |
区惠平, 周柳强, 黄金生, 等. 长期不同施肥对甘蔗产量稳定性、肥料贡献率及养分流失的影响[J]. 中国农业科学, 2018,51(10):1931-1939.
DOI URL |
[11] | 刀静梅, 郭家文, 崔雄维, 等. 不同供氮水平对甘蔗产量和品质的影响[J]. 中国糖料, 2011(2):22-23. |
[12] | 韦剑锋, 韦冬萍, 陈超君, 等. 不同施氮方式对甘蔗氮肥效率及氮素去向的影响[J]. 核农学报, 2013,27(2):213-218. |
[13] | Lu L S. Introduction to China's agriculture[M]. Chengdu: Sichuan Science and Technology Press, 1999: 98-106. |
[14] | 李志贤, 王建武, 杨文亭, 等. 广东省甜玉米/大豆间作模式的效益分析[J]. 中国生态农业学报, 2010,18(3):627-631. |
[15] | 韦贵剑, 梁景文, 陆文娟, 等. 甘蔗间种大豆最佳模式探讨[J]. 南方农业学报, 2013,44(1):49-53. |
[16] | 荆凡胜, 陈斌, 常怀艳, 等. 玉米//甘蔗对玉米蚜、甘蔗绵蚜及其天敌昆虫的影响[J]. 云南农业大学学报(自然科学版), 2017,32(3):432-441. |
[17] |
Kamruzzaman M, Hasanuzzaman M. Factors affecting profitability of sugarcane production as monoculture and as intercrop in selected areas of Bangladesh[J]. Bangladesh Journal of Agricultural Research, 2008,32(3):433-444.
DOI URL |
[18] | 陈道德, 吕达, 肖祎, 等. 甘蔗间套种植效应研究[J]. 甘蔗糖业, 2014(1):12-19. |
[19] | 敖俊华, 江永, 周文灵, 等. 甘蔗/大豆间作模式的生产力分析[J]. 广东农业科学, 2014,41(3):29-32. |
[20] | 李秀平, 李穆, 年海, 等. 甘蔗/大豆间作对甘蔗和大豆产量与品质的影响[J]. 东北农业大学学报, 2012,43(7):42-46. |
[21] | 黄绍富, 黄杰基. 蔗区土壤肥力现状与甘蔗测土配方施肥[J]. 广西蔗糖, 2006(4):10-12, 17. |
[22] | 车江旅, 吴建明, 宋焕忠. 甘蔗间套种大豆研究进展[J]. 南方农业学报, 2011,42(8):898-900. |
[23] | 唐红琴, 汪淼, 方锋学, 等. 我国甘蔗间种不同作物的研究进展[J]. 中国糖料, 2012(4):65-69, 78. |
[24] | 李隆. 间套作强化农田生态系统服务功能的研究进展与应用展望[J]. 中国生态农业学报, 2016,24(4):403-415. |
[25] | 刘培, 邵宇婷, 王志国, 等. 减氮对华南地区甜玉米//大豆系统产量稳定性的影响[J]. 中国生态农业学报, 2019,27(9):1332-1343. |
[26] | 李志贤, 王建武, 杨文亭, 等. 甘蔗/大豆间作减量施氮对甘蔗产量、品质及经济效益的影响[J]. 应用生态学报, 2011,22(3):713-719. |
[27] |
杨文亭, 李志贤, 赖健宁, 等. 甘蔗-大豆间作和减量施氮对甘蔗产量和主要农艺性状的影响[J]. 作物学报, 2014,40(3):556-562.
DOI URL |
[28] | 杨文亭, 李志贤, 冯远娇, 等. 甘蔗-大豆间作对大豆鲜荚产量和农艺性状的影响[J]. 生态学杂志, 2012,31(3):577-582. |
[29] |
Yang W T, Li Z X, Wang J W, et al. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application[J]. Field Crops Research, 2013,146:44-50.
DOI URL |
[30] | 杨文亭, 李志贤, 舒磊, 等. 甘蔗//大豆间作和减量施氮对甘蔗产量、植株及土壤氮素的影响[J]. 生态学报, 2011,31(20):6108-6115. |
[31] |
Luo S S, Yu L L, Liu Y, et al. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/ soybean intercropping system[J]. European Journal of Agronomy, 2016,81:78-85.
DOI URL |
[32] | 章莹, 王建武, 王蕾, 等. 减量施氮与大豆间作对蔗田土壤温室气体排放的影响[J]. 中国生态农业学报, 2013,21(11):1318-1327. |
[33] | 管奥湄, 章莹, 刘宇, 等. 减量施氮与间作大豆对蔗田碳平衡特征的影响[J]. 中国生态农业学报, 2016,24(4):478-488. |
[34] |
Tariah N M, Wahua T A T. Effects of component populations on yields and land equivalent ratios of intercropped maize and cowpea[J]. Field Crops Research, 1985,12:81-89.
DOI URL |
[35] | Wricke G. Uber eine methode zur erfassung der okologischen streubreite in feldversucen[J]. Zeitschrift Fur Pflanzenzuchtung-Journal of Plant Breeding, 1962,47:92-96. |
[36] |
Damodar R D, Subba R A, Sammi R K, et al. Yield sustainability and phosphorus utilization in soybean-wheat system on vertisols in response to integrated use of manure and fertilizer phosphorus[J]. Field Crops Research, 1999,62(2):181-190.
DOI URL |
[37] |
Francis T R, Kannenberg L W. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes[J]. Canadian Journal of Plant Science, 1978,58(4):1029-1034.
DOI URL |
[38] | 广东省甘蔗糖业食品科学研究所. 甘蔗制糖化学管理分析方法[M]. 北京: 中国轻工业出版社, 1974. |
[39] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 49-83. |
[40] | 孟维伟, 高华鑫, 张正, 等. 不同玉米花生间作模式对系统产量及土地当量比的影响[J]. 山东农业科学, 2016,48(12):32-36. |
[41] |
Fan F L, Zhang F S, Song Y N, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant Soil, 2006,283, 275-286.
DOI URL |
[42] | 肖焱波, 李隆, 张福锁. 豆科//禾本科间作系统中氮营养研究进展[J]. 中国农业科技导报, 2003(6):44-49. |
[43] |
Hauggaard-N H, Ambus P, Jensen E S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley[J]. Nutrient Cycling in Agroecosystems, 2003,65(3):289-300.
DOI URL |
[44] |
Li X P, Mu Y H, Cheng Y B, et al. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability[J]. Acta Physiologiae Plantarum, 2013,35(4):1113-1119.
DOI URL |
[45] |
Berzsenyi Z, Győrffy B, Lap D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment[J]. European Journal of Agronomy, 2000,13(2):225-244.
DOI URL |
[46] |
Stelluti M, Caliandro A, Stellacci A M. Influence of previous crop on durum wheat yield and yield stability in a long-term experiment[J]. Italian Journal of Agronomy, 2007,2(3):333-340.
DOI URL |
[47] | Wanjari R H, Singh M V, Ghosh P K. Sustainable yield index: An approach to evaluate the sustainability of long-term intensive cropping systems in India[J]. Journal of sustainable agriculture, 2004,24(4):39-56. |
[48] |
Manna M C, Swarup A, Wanjari R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India[J]. Field Crops Research, 2005,93(2-3):264-280.
DOI URL |
[49] | 谢如林, 谭宏伟, 周柳强, 等. 不同氮磷施用量对甘蔗产量及氮肥、磷肥利用率的影响[J]. 西南农业学报, 2012,25(1):198-202. |
[50] | Jensen E S. Intercropping field bean with spring wheat[J]. Vorträge Für Pflanzenzüchtung, 1986,11:67-75. |
[51] | 杨建波, 彭东海, 覃刘东, 等. 低氮条件下甘蔗-大豆间作对甘蔗产量、品质及经济效益的影响[J]. 应用生态学报, 2015,26(5):1426-1432. |
[52] | 张跃彬, 樊仙, 刀静梅. 不同氮水平对甘蔗生长的影响[J]. 中国糖料, 2013(3):15-17. |
[1] | DENG Xingliang, YANG Anfu, YANG Li, MENG Longwei, YUAN Manyao, CHEN Junnan, WU Xiaochen. Soil Nutrient Analysis and Comprehensive Fertility Evaluation of Four Types of Agricultural Land in Hainan Island [J]. Chinese Journal of Tropical Crops, 2023, 44(7): 1497-1505. |
[2] | LI Lei, LIU Jiaying, XU Yanping, RONG Jundong, SHI Chengkun, ZHENG Yushan. Soil Physical and Chemical Properties and Comprehensive Evaluation of Different Bamboo Forest in Coastal Sandy Land [J]. Chinese Journal of Tropical Crops, 2023, 44(1): 215-223. |
[3] | ZHANG Jiangzhou, LIU Yanan, GAO Wei, WANG Beibei, RUAN Yunze. Integrated Analysis of Soil Fertility Status in the Banana Orchards in China [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1401-1410. |
[4] | ZHOU Weijie, LI Zhonghao, LI Tingyu, WU Heyi, LIU Bin, GAO Wei, RUAN Yunze. Optimal Nitrogen Organic Replacement Ratio for Synergistic Crop Quality and Efficiency Enhancement and Soil Fertility Enhancement- Taking Panzhihua Mango as an Example [J]. Chinese Journal of Tropical Crops, 2022, 43(5): 1032-1044. |
[5] | WU Xiaofang, ZHANG Zhenshan, FAN Qiong, DENG Aini. Comprehensive Evaluation of Soil Fertility in Orchards of Hainan Province [J]. Chinese Journal of Tropical Crops, 2021, 42(7): 2109-2118. |
[6] | LIANG Mantian, HUANG Ke, YUAN Yiming, MAO Shuxiang, WU Qiuyun, WANG Junwei. Effects of Partial Substitution of Organic Fertilizer for Chemical Fertilizer on Growth, Quality and Soil Condition of Cabbage [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1371-1377. |
[7] | SU Xuexia, LIU Qinghui, BAI Cuihua, ZHOU Changmin, YAO Lixian. Investigation and Analysis on Soil Properties of Litchi Orchards in South China [J]. Chinese Journal of Tropical Crops, 2021, 42(11): 3165-3172. |
[8] | ZHAO Chunmei, ZHANG Yongfa, LUO Xuehua, XUE Xinxin, WANG Wenbin, WU Xiaoping, LUO Liangyuan, Didier Lesueur. Soil Microbial Community Characteristics among Different Parent Materials in Rubber Plantation, Hainan [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 283-289. |
[9] | SUN Fengxia,WANG Xinyao,TANG Peng,WANG Xu,WU Shuhua,LI Chao,CHENG Yikang,REN Haotian. Growth and Soil Fertility Characteristics of Rubber Seedlings in Different Biogas Slurry Irrigation [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1918-1927. |
[10] | ZHAN Shan,YUAN Hong,DU Tiantian,REN Wei,KUANG Huiwu,SONG Hongfu,SHENG Hao. Effects of Buffering Ability to Acid and Alkali and Available Cadmium Content in Different Cadmium Reduction Treatments in Paddy Soil [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 225-229. |
[11] | LIU Bin,WANG Songbiao,LI Xin,SU Muqing,MA Haiyang,WU Hongxia,ZHOU Yigang,MA Xiaowei. Assessment of Soil Fertility in the Mango Orchards of Panzhihua, Sichuan, China [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 1-6. |
[12] | CHEN Yuqin,HU Yongliang,ZHANG Liping,YIN Hongxing,HUANG Jiawei,LI Shouling. Evaluation of Soil Fertility of Rubber Plantation in Dehong Based on Principal Component and Cluster Analysis [J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1461-1467. |
[13] | TAN Shibei,XI Jingen,ZHENG Jinlong,HE Chunping,WU Weihuai,LIANG Yanqiong,HUANG Xing,LI Rui,YI Kexian. Effects of Sisal Stalks Returned to the Field with Nitrogen Fertilizer on the Soil Fertility and Sisal Growth [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 839-849. |
[14] | ZHAO Mingzhu,WU Ting,TANG Jin,MA Guanrun,GUO Tieying,XIAO Ziwei,SU Linlin,ZHOU Hua,BAI Xuehui. Status Quo and Variation of Soil Fertility in Different Altitude of Coffea arabica L. [J]. Chinese Journal of Tropical Crops, 2019, 40(4): 629-637. |
[15] | WEI Zenghui,PAN Yunzhou,WANG Yuyang,WU Zhipeng,ZHU Zhiqiang,WU Weidong. Effects of Different Raw Material Organic Fertilizers on Soil Fertility and Wax Gourd Yield [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 232-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||