Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (5): 1030-1040.DOI: 10.3969/j.issn.1000-2561.2020.05.025
• Agricultural Product Processing, Preservation, Storage, Analysis and Detection • Previous Articles Next Articles
SHI Dongjie1,FANG Yiming2,3,4,ZHU Hongying2,3,4,ZHAO Jing1,CHU Zhong2,3,4,*()
Received:
2019-08-22
Revised:
2019-09-11
Online:
2020-05-25
Published:
2020-06-15
Contact:
CHU Zhong
CLC Number:
SHI Dongjie,FANG Yiming,ZHU Hongying,ZHAO Jing,CHU Zhong. Comparative Study on Characterization and Physical and Chemical Properties of Mallotus peltatus Powder with Different Particle Sizes[J]. Chinese Journal of Tropical Crops, 2020, 41(5): 1030-1040.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.05.025
因子 Factor | 级别 Class | 品质特征 Quality characteristics | 分数 Score | 评分系数 Score coefficient |
---|---|---|---|---|
外形(a) | 甲 | 嫩度好,细、匀、净,色鲜活 | 90~90 | 10% |
乙 | 嫩度较好,细、匀、净,色较鲜活 | 80~89 | ||
丙 | 嫩度稍低,细、较匀净,色尚鲜活 | 70~79 | ||
汤色(b) | 甲 | 色泽依茶类不同,色彩鲜活 | 90~90 | 20% |
乙 | 色泽依茶类不同,色彩尚鲜活 | 80~89 | ||
丙 | 色泽依茶类不同,色彩较差 | 70~79 | ||
香气(c) | 甲 | 嫩香,嫩栗香,清高,花香 | 90~90 | 35% |
乙 | 清香,尚高,栗香 | 80~89 | ||
丙 | 尚纯,熟,老火,青气 | 70~79 | ||
滋味(d) | 甲 | 鲜醇爽口,醇厚甘爽,醇厚鲜爽,口感细腻 | 90~90 | 35% |
乙 | 浓厚,尚醇厚,口感较细腻 | 80~89 | ||
丙 | 尚醇,浓涩,青涩,有粗糙感 | 70~79 |
Tab. 1 Tea powder quality factor score sheet
因子 Factor | 级别 Class | 品质特征 Quality characteristics | 分数 Score | 评分系数 Score coefficient |
---|---|---|---|---|
外形(a) | 甲 | 嫩度好,细、匀、净,色鲜活 | 90~90 | 10% |
乙 | 嫩度较好,细、匀、净,色较鲜活 | 80~89 | ||
丙 | 嫩度稍低,细、较匀净,色尚鲜活 | 70~79 | ||
汤色(b) | 甲 | 色泽依茶类不同,色彩鲜活 | 90~90 | 20% |
乙 | 色泽依茶类不同,色彩尚鲜活 | 80~89 | ||
丙 | 色泽依茶类不同,色彩较差 | 70~79 | ||
香气(c) | 甲 | 嫩香,嫩栗香,清高,花香 | 90~90 | 35% |
乙 | 清香,尚高,栗香 | 80~89 | ||
丙 | 尚纯,熟,老火,青气 | 70~79 | ||
滋味(d) | 甲 | 鲜醇爽口,醇厚甘爽,醇厚鲜爽,口感细腻 | 90~90 | 35% |
乙 | 浓厚,尚醇厚,口感较细腻 | 80~89 | ||
丙 | 尚醇,浓涩,青涩,有粗糙感 | 70~79 |
类别 Category | 色差Color difference | ||||
---|---|---|---|---|---|
L* | a* | b* | C* | H* | |
超微粉Ⅰ | 56.86±0.34cd | 1.38±0.02b | 33.43±1.46b | 33.46±1.45b | 87.62±0.12a |
超微粉Ⅱ | 56.61±0.35a | 2.00±0.01c | 33.11±0.25b | 33.17±0.25b | 86.54±0.11a |
超微粉Ⅲ | 57.97±0.21b | 1.91±0.01d | 33.71±1.25b | 33.77±1.25b | 86.75±0.13a |
粗粉(40目) | 58.73±2.23c | 1.24±0.03a | 28.21±0.53a | 28.23±0.53a | 87.48±0.07a |
细粉(100目) | 62.70±1.75d | 1.18±0.01a | 29.43±0.83a | 29.45±0.83a | 87.70±0.07b |
Tab. 2 Tea powder color of different sizes
类别 Category | 色差Color difference | ||||
---|---|---|---|---|---|
L* | a* | b* | C* | H* | |
超微粉Ⅰ | 56.86±0.34cd | 1.38±0.02b | 33.43±1.46b | 33.46±1.45b | 87.62±0.12a |
超微粉Ⅱ | 56.61±0.35a | 2.00±0.01c | 33.11±0.25b | 33.17±0.25b | 86.54±0.11a |
超微粉Ⅲ | 57.97±0.21b | 1.91±0.01d | 33.71±1.25b | 33.77±1.25b | 86.75±0.13a |
粗粉(40目) | 58.73±2.23c | 1.24±0.03a | 28.21±0.53a | 28.23±0.53a | 87.48±0.07a |
细粉(100目) | 62.70±1.75d | 1.18±0.01a | 29.43±0.83a | 29.45±0.83a | 87.70±0.07b |
类别 Category | 粒径Size/mm | 体积平均粒径Volume average size/mm | 比表面积Specific area/ (m2·g-1) | 离散度Dispersion | ||
---|---|---|---|---|---|---|
D10 | D50 | D90 | ||||
粗粉 | 8.33±0.06e | 120.45±0.61d | 326.26±6.09d | 147.26±3.9d | 0.24±2.54a | 2.63±0.03a |
细粉 | 7.10±0.02d | 65.86±0.97c | 181.87±2.93c | 80.69±1.31c | 0.31±1.48b | 2.65±0.004a |
超微粉Ⅰ | 6.21±0.01b | 21.92±0.15b | 127.64±1.05b | 47.08±0.21b | 0.46±1.97c | 5.53±0.009c |
超微粉碎Ⅱ | 6.30±0.02c | 20.64±0.02a | 108.08±1.46a | 41.25±0.38a | 0.47±0.63c | 4.93±0.06b |
超微粉碎Ⅲ | 6.09±0.03a | 20.29±0.04a | 105.40±0.23a | 40.87±0.16a | 0.50±3.04d | 4.89±0.02b |
Tab. 3 Related indexes of powder with different sizes
类别 Category | 粒径Size/mm | 体积平均粒径Volume average size/mm | 比表面积Specific area/ (m2·g-1) | 离散度Dispersion | ||
---|---|---|---|---|---|---|
D10 | D50 | D90 | ||||
粗粉 | 8.33±0.06e | 120.45±0.61d | 326.26±6.09d | 147.26±3.9d | 0.24±2.54a | 2.63±0.03a |
细粉 | 7.10±0.02d | 65.86±0.97c | 181.87±2.93c | 80.69±1.31c | 0.31±1.48b | 2.65±0.004a |
超微粉Ⅰ | 6.21±0.01b | 21.92±0.15b | 127.64±1.05b | 47.08±0.21b | 0.46±1.97c | 5.53±0.009c |
超微粉碎Ⅱ | 6.30±0.02c | 20.64±0.02a | 108.08±1.46a | 41.25±0.38a | 0.47±0.63c | 4.93±0.06b |
超微粉碎Ⅲ | 6.09±0.03a | 20.29±0.04a | 105.40±0.23a | 40.87±0.16a | 0.50±3.04d | 4.89±0.02b |
参数 Parameter | D10 | D50 | D90 | 体积平均粒径Volume average size | 比表面积Specific area | 离散度 Dispersion |
---|---|---|---|---|---|---|
D10 | 1 | |||||
D50 | 0.994 | 1 | ||||
D90 | 0.987 | 0.991 | 1 | |||
体积平均粒径 | 0.991 | 0.996 | 0.999 | 1 | ||
比表面积 | -0.964 | -0.968 | -0.937 | -0.946 | 1 | |
离散度 | -0.874 | -0.893 | -0.826 | -0.947 | 0.947 | 1 |
Tab. 4 Correlation coefficient of powder with different particle size and characteristics
参数 Parameter | D10 | D50 | D90 | 体积平均粒径Volume average size | 比表面积Specific area | 离散度 Dispersion |
---|---|---|---|---|---|---|
D10 | 1 | |||||
D50 | 0.994 | 1 | ||||
D90 | 0.987 | 0.991 | 1 | |||
体积平均粒径 | 0.991 | 0.996 | 0.999 | 1 | ||
比表面积 | -0.964 | -0.968 | -0.937 | -0.946 | 1 | |
离散度 | -0.874 | -0.893 | -0.826 | -0.947 | 0.947 | 1 |
Fig. 5 Fluidity of powder with different partide size Different lowercase letters represent significant differences at 0.05 level between the sliding angles of 5 tea powders. Different capital letters represent significant differences at 0.05 level between the resting angles.
Fig. 7 Comparison of expansion degree of powder with different partide sizes Different lowercase letters represent significant differences between different powder expansions (P<0.05).
Fig. 8 Comparison of wettability of powder with different partide size Different lowercase letters represent significant differences in wettability of different powders (P<0.05).
Fig. 9 Comparison of water holding capacity of powder with different partide size Different lowercase letters represent significant differences in water holding capacity of different powders (P<0.05).
Fig. 10 Comparison of polysaccharide content of tea powder of partridge with different partide size Different lowercase letters represent significant differences at 0.05 level in polysaccharide content of different tea powders.
[1] | 顾文亮, 谭乐和, 郝朝运, 等. 鹧鸪茶的研究进展与开发利用现状[J]. 热带农业科学, 2015,35(2):28-35. |
[2] | 严武平, 李娟玲. 海南鹧鸪茶的研究进展[J]. 中国农学通报, 2016,32(28):200-204. |
[3] |
Adam J H, Mamat Z. Floristic composition and structural comparison of limestoneforests at three different elevations in Bau, Kuching, Sarawak, Malaysia[J]. Journal of Biological Sciences, 2005,5(4):478-485.
DOI URL |
[4] | 江和源. 茶叶降血糖活性及对糖尿病的功效与机理[J]. 中国茶叶, 2019,41(2):1-6. |
[5] | 郭莹. 速溶鹧鸪茶的开发及加工中关键技术研究[D]. 哈尔滨: 黑龙江东方学院, 2018. |
[6] | 赵秀玲, 王志伟. 鹧鸪茶精油的GC-MS分析及其体外抗氧化性研究[J]. 贵州师范大学学报(自然科学版), 2016,34(4):75-81. |
[7] | 郭莹, 初众, 钱镭, 等. 速溶鹧鸪茶粉真空冷冻干燥工艺及品质分析[J]. 中国食品添加剂, 2019,30(7):138-147. |
[8] | 陈德力, 郑威, 冯剑, 等. 鹧鸪茶化学成分研究[J]. 中草药, 2017,48(23):4851-4855. |
[9] | 陈颖慧. 食品加工中超微粉碎技术的运用研究[J]. 食品安全导刊, 2016(35):73. |
[10] |
Zhong C, Zu Y, Zhao X, et al. Effect of superfine grinding on physicochemical and antioxidant properties of pomegranate peel[J]. International Journal of Food Science and Technology, 2016,51(1):212-221.
DOI URL |
[11] |
何运, 范子玮, 吴雨, 等. 不同粒度桑叶粉的物化特性和黄酮体外溶出规律的研究[J]. 食品科学, 2016,37(9):123-128.
DOI URL |
[12] | 李光辉, 王军, 高雪丽, 等. 花豇豆全粉超微粉碎对其物化特性和抗氧化性的影响[J]. 食品科技, 2019,44(2):99-103. |
[13] | 杨沫, 薛媛, 任璐, 等. 不同粒度花椒籽黑种皮粉理化特性[J]. 食品科学, 2018,39(9):47-52. |
[14] | 杨永安, 谢川花, 张翠英, 等. 桑叶的红外光谱和紫外光谱研究[J]. 光散射学报, 2013,25(3):276-280. |
[15] | 卜凡群. 海带超微粉加工技术及其理化特性的研究[D]. 福州: 福建农林大学, 2010. |
[16] |
Li J Y, Yeh A I. Relationships between thermal, rheological characteristics and swelling power for various starches[J]. Journal of Food Engineering, 2001,50(3):141-148.
DOI URL |
[17] | 张新. 脱脂栀子粕超微粉物化及功能特性的分析研究[D]. 杭州: 浙江农林大学, 2018. |
[18] |
Esposito F, Arlotti G, Bonifati A M, et al. Antioxidant activity and dietary fibre in durum wheat bran by-products[J]. Food Research International, 2005,38(10):1167-1173.
DOI URL |
[19] | 李春雷, 步召胜, 李志鹏. 茶多糖提取分离工艺综述[J]. 中国茶叶加工, 2015(1):43-47. |
[20] | 宋励修, 秦建. 茶叶中茶多糖含量的比较分析[J]. 安徽农业科学, 2016,44(23):35-36, 71. |
[21] | 喻祖文, 张旺凡. 多倍体黄精中多糖和皂苷的提取及含量测定[J]. 中国现代中药, 2011,13(5):20-22. |
[22] | 李状, 朱德明, 李积华, 等. 振动超微粉碎对毛竹笋干物化特性的影响[J]. 农业工程学报, 2014,30(3):259-263. |
[23] | 王军, 程晶晶, 李艳芳, 等. 振动式超微粉碎对南瓜全粉物化特性的影响[J]. 食品工业, 2016,37(7):168-171. |
[24] | 张洁, 于颖, 徐桂花. 超微粉碎技术在食品工业中的应用[J]. 农业科学研究, 2010,31(1):51-54. |
[25] | 张丽媛, 陈如, 田昊, 等. 超微粉碎对苹果膳食纤维理化性质及羟自由基清除能力的影响[J]. 食品科学, 2018,39(15):139-144. |
[26] | 牛耀虎. 三种药材超微粉和普通粉体比较研究[D]. 兰州: 兰州大学, 2011. |
[27] | 张雨桐, 张彦军, 朱科学, 等. 支链聚合度对菠萝蜜种子淀粉凝胶化特性的影响[J]. 食品工业科技, 2019,40(16):7-13. |
[28] |
Sasaki Y, Sato S, Adachi A, et al. Use of oolong tea extract staining of soft-tissue specimens in low-vacuum scanning electron microscope with a cooling stage[J]. Medical Electron Microscopy, 2001,34(4):254-257.
DOI URL |
[29] |
黄晟, 朱科学, 钱海峰, 等. 超微及冷冻粉碎对麦麸膳食纤维理化性质的影响[J]. 食品科学, 2009,30(15):40-44.
DOI URL |
[30] | 李状. 毛竹笋超微粉碎、理化特性研究及复合固体饮料开发[D]. 武汉: 华中农业大学, 2014. |
[31] | 方吉雷, 葛青, 毛建卫, 等. 超微粉碎对竹粉膳食纤维功能特性的影响[J]. 食品工业科技, 2017,38(17):50-55. |
[32] |
何运, 范子玮, 吴雨, 等. 不同粒度桑叶粉的物化特性和黄酮体外溶出规律的研究[J]. 食品科学, 2016,37(9):123-128.
DOI URL |
[33] |
Wu G, Zhang M, Wang Y, et al. Production of silver carp bone powder using superfine grinding technology: Suitable production parameters and its properties[J]. Journal of Food Engineering, 2012,109(4):730-735.
DOI URL |
[34] | 黄梅华, 吴儒华, 何全光, 等. 不同粒径金花茶茶花粉体物理特性[J]. 食品科学, 2018,39(3):76-82. |
[35] | 梁兆昌, 褚洪标, 肖琳, 等. 杜仲超微粉体理化特性及体外溶出性能研究[J]. 中草药, 2015,46(11):1609-1614. |
[36] |
Zhang M, Zhang C, Shrestha S. Study on the preparation technology of superfine ground powder of Agrocybechaxingu Huang[J]. Journal of Food Engineering, 2005,67(3):333-337.
DOI URL |
[37] | 俞东宁, 陈萍, 王爽, 等. 龙井茶多糖对ALX糖尿病模型小鼠氧化应激的影响[J]. 中国食品学报, 2016,16(4):30-34. |
[38] | 王林戈. 绿茶茶多糖与茶多酚对胰岛细胞的协同保护作用研究[D]. 青岛: 中国海洋大学, 2011. |
[39] | 王玄源. 苦丁茶皂苷的提取、分离纯化及kudinoside A的降血脂作用研究[D]. 武汉: 湖北中医药大学, 2018. |
[40] |
Raghavendra S N, Swamy S R R, Rastogi N K, et al. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber[J]. Journal of Food Engineering, 2006,72(3):281-286.
DOI URL |
[1] | WU Min,WEI Jiashao,HE Peng,WU Bingsun,WU Wenguan,GAO Le,WANG Guihua,SUN Yong. Humic Acid Nutrient Modifier Improved Soil Physicochemical Properties in Orchard and Nutrient Contents of Young Stems of Pitaya [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 211-216. |
[2] | LIU Yufeng,PAN Zengbao,SU Tianming,ZENG Chengcheng,LIANG Zhiheng. Effects of Different Chewing Cane-peanut Intercropping Treatments on Yield, Economic Benefit and Soil Physicochemical Properties [J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2333-2340. |
[3] | TU Xinghao,SUN Liqun,TANG Jinghua,ZHANG Ming,SHUAI Xixiang,CHEN Hong,DU Liqing. Optimization of Ultrasonic Assisted Extraction of Macadamia Oil and Its Physicochemical Properties [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2217-2226. |
[4] | CHEN Yanyang , CHANG Gang , WEI Xiaoyi , LI Jihua , XIA Wen. Influence of Micronization on Physicochemical Properties of Bagasse Powder [J]. Chinese Journal of Tropical Crops, 2018, 39(3): 565-569. |
[5] | WEN Jing XIAO Gengsheng XU Yujuan WU Jijun YU Yuanshan LI Jun. Influence of Thermal and High Hydrostatic Pressure on Quality Characteristics of Papaya Pulp [J]. Chinese Journal of Tropical Crops, 2016, 37(2): 390-395. |
[6] | Hou Xianwen, Deng Xiao, Li Guangyi, Li Qinfen, Chen Xuan. Changes of Physicochemical Properties and Maturity Evaluation of Cassava Residue Compost during Composting [J]. Chinese Journal of Tropical Crops, 2009, 30(10): 1422-1428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||