Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (5): 971-977.DOI: 10.3969/j.issn.1000-2561.2020.05.017
• Biotechnology and Tissue Culture • Previous Articles Next Articles
WEN Yifu1,HAN Rongrong2,SHAN Guilian1,SHI Liangtao3,LUO Fucheng1,ZHAO Xiaoxue1,ZENG Liqiong4
Received:
2019-06-03
Revised:
2019-09-07
Online:
2020-05-25
Published:
2020-06-15
CLC Number:
WEN Yifu,HAN Rongrong,SHAN Guilian,SHI Liangtao,LUO Fucheng,ZHAO Xiaoxue,ZENG Liqiong. Analysis of Differentially Expressed Genes in Low Phosphorus Stress of Stylosanthes Guianensis[J]. Chinese Journal of Tropical Crops, 2020, 41(5): 971-977.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.05.017
编号 No. | 正向引物(5°-3°) Forward primer(5°-3°) | 编号 No. | 反向引物(5°-3°) Reverse primer(5°-3°) |
---|---|---|---|
M1 | TGAGTCCAAACCGGATA | E2 | GACTGCGTACGAATTTGC |
M4 | TGAGTCCAAACCGGACC | E3 | GACTGCGTACGAATTGAC |
M5 | TGAGTCCAAACCGGAAG | E4 | GACTGCGTACGAATTTGA |
E5 | GACTGCGTACGAATTAAC | ||
E7 | GACTGCGTACGAATTCAA | ||
E8 | GACTGCGTACGAATTCTG |
Tab. 1 Sequence of primers of cDNA-SRAP
编号 No. | 正向引物(5°-3°) Forward primer(5°-3°) | 编号 No. | 反向引物(5°-3°) Reverse primer(5°-3°) |
---|---|---|---|
M1 | TGAGTCCAAACCGGATA | E2 | GACTGCGTACGAATTTGC |
M4 | TGAGTCCAAACCGGACC | E3 | GACTGCGTACGAATTGAC |
M5 | TGAGTCCAAACCGGAAG | E4 | GACTGCGTACGAATTTGA |
E5 | GACTGCGTACGAATTAAC | ||
E7 | GACTGCGTACGAATTCAA | ||
E8 | GACTGCGTACGAATTCTG |
编号 No. | 正向引物(5°-3°) Forward primer | 编号 No. | 反向引物(5°-3°) Reverse primer |
---|---|---|---|
P1-上 | GAGTTAGCCGATGCTTATTCC | P1-下 | AGCTTACCAAGGCGATGA |
P2-上 | GGTTACCTCCATGCTGAA | P2-下 | AATGACAATGGCTGGGTTCACATCA |
P3-上 | ATCGTTTTCATATAGGTGCTACTCC | P3-下 | TTTATCGCACTGCTATCAGACCGGC |
Pβ-上 | CAGTGGTCGTACAACTGGTAT | Pβ-下 | ATCCTCCAATCCAGACACTGT |
Tab. 2 Sequence of primers of RT-PCR
编号 No. | 正向引物(5°-3°) Forward primer | 编号 No. | 反向引物(5°-3°) Reverse primer |
---|---|---|---|
P1-上 | GAGTTAGCCGATGCTTATTCC | P1-下 | AGCTTACCAAGGCGATGA |
P2-上 | GGTTACCTCCATGCTGAA | P2-下 | AATGACAATGGCTGGGTTCACATCA |
P3-上 | ATCGTTTTCATATAGGTGCTACTCC | P3-下 | TTTATCGCACTGCTATCAGACCGGC |
Pβ-上 | CAGTGGTCGTACAACTGGTAT | Pβ-下 | ATCCTCCAATCCAGACACTGT |
Fig. 1 Agarose gel electrophoresis of RNA extractions of S. guianensis 1-4: RNA of stem low-Pi stressed for 0, 1, 3, 7 d; 5-8: RNA of leaf low-Pi stressed for 0, 1, 3, 7 d.
Fig. 2 Polyacrylamide gel electrophoresis detections of products from stem and root samples of S. guianensis under various low-Pi time points M: DL2000 DNA Marker; 1-4: Products of cDNA-SRAPof stem low-Pi stressed for 0, 1, 3, 7 d; 5-8: Products of cDNA-SRAP of leaf low-Pi stressed for 0, 1, 3, 7 d.
引物组合 Primer combination | 抑制型表达 Inhibitory expression | 诱导表达Induced expression | 上调表达 Upward expression | 下调表达 Down expression | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 d诱导 1 d induction | 3 d诱导 3 d induction | 7 d诱导 7 d induction | 特殊型诱导 Special type induction | ||||||||||||||
茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | ||||
M1/E2 | 3 | 2 | 0 | 2 | 1 | 2 | 3 | 4 | 1 | 4 | 11 | 4 | 0 | 0 | |||
M1/E3 | 6 | 3 | 5 | 0 | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 6 | 4 | 1 | |||
M1/E5 | 2 | 0 | 1 | 1 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | |||
M1/E7 | 6 | 0 | 2 | 1 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | |||
M1/E8 | 9 | 3 | 4 | 0 | 4 | 1 | 1 | 0 | 0 | 4 | 4 | 4 | 1 | 1 | |||
M4/E3 | 6 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | |||
M4/E4 | 2 | 7 | 6 | 6 | 1 | 2 | 1 | 2 | 4 | 0 | 0 | 1 | 2 | 1 | |||
M5/E4 | 4 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | |||
合计 | 38 | 18 | 20 | 13 | 11 | 12 | 6 | 14 | 8 | 8 | 17 | 19 | 7 | 4 | |||
56 | 33 | 23 | 20 | 16 | 36 | 11 |
Tab. 3 Results of the differentially expressed fragments of S. guianensis
引物组合 Primer combination | 抑制型表达 Inhibitory expression | 诱导表达Induced expression | 上调表达 Upward expression | 下调表达 Down expression | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 d诱导 1 d induction | 3 d诱导 3 d induction | 7 d诱导 7 d induction | 特殊型诱导 Special type induction | ||||||||||||||
茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | 茎 Stem | 叶 Leaves | ||||
M1/E2 | 3 | 2 | 0 | 2 | 1 | 2 | 3 | 4 | 1 | 4 | 11 | 4 | 0 | 0 | |||
M1/E3 | 6 | 3 | 5 | 0 | 4 | 2 | 0 | 2 | 0 | 0 | 0 | 6 | 4 | 1 | |||
M1/E5 | 2 | 0 | 1 | 1 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | |||
M1/E7 | 6 | 0 | 2 | 1 | 0 | 2 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 0 | |||
M1/E8 | 9 | 3 | 4 | 0 | 4 | 1 | 1 | 0 | 0 | 4 | 4 | 4 | 1 | 1 | |||
M4/E3 | 6 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 0 | 1 | |||
M4/E4 | 2 | 7 | 6 | 6 | 1 | 2 | 1 | 2 | 4 | 0 | 0 | 1 | 2 | 1 | |||
M5/E4 | 4 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | |||
合计 | 38 | 18 | 20 | 13 | 11 | 12 | 6 | 14 | 8 | 8 | 17 | 19 | 7 | 4 | |||
56 | 33 | 23 | 20 | 16 | 36 | 11 |
登录号 Accession No. | 大小 Length/bp | E值 E value | 同源性 Identity/% | 功能预测 Functional prediction | 来源 Source |
---|---|---|---|---|---|
BT143265 | 342 | 3E-32 | 80 | JCVI-FLLj-1K4未知mRNA JCVI-FLLj-1K4 unknown mRNA | Lotus japonicus |
DQ401328 | 248 | 1E-62 | 93 | ATP合成酶ATPase beta subunit | Cercis canadensis |
XM_003621654 | 449 | 1E-66 | 90 | 醛固酮还原酶Aldo/keto reductase | Medicago truncatula |
YP_008563132.1 | 270 | 9E-121 | 98 | 叶绿体RF2 Chloroplast RF2 | Solanum lycopersicum |
AY968436 | 215 | 2E-81 | 94 | ATP合成酶ATPase beta subunit | Gynostemma pentaphyllum |
AEL30361.1 | 287 | 2E-98 | 91 | NBS-LRR型抗病蛋白 NBS-LRR type disease resistance protein | Arachis hypogaea |
AEL30361.1 | 286 | 6E-98 | 93 | NBS-LRR型抗病蛋白 NBS-LRR type disease resistance protein | Arachis hypogaea |
YP_008563132.1 | 357 | 6E-114 | 99 | 叶绿体RF2 Chloroplast RF2 | Solanum lycopersicum |
XM_004293231 | 280 | 2E-73 | 88 | UPF0051蛋白(predicted) UPF0051 protein (predicted) | Fragaria vesca |
XM_007154190 | 472 | 5E-131 | 87 | 假设蛋白Hypothetical protein | Phaseolus vulgaris |
XR_137478 | 452 | 7E-149 | 89 | 蛋白酶启动子(predicted) Proteasome activator (predicted) | Glycine max |
XM_008340114 | 301 | 1E-5 | 97 | SCEI结合酶(预测) SUMO-conjugating enzyme SCE1 (predicted) | Malus domestica |
XM_003527773 | 441 | 6E-95 | 85 | 吲哚-3-丙酮酸盐单氧酶(predicted) Indole-3-pyruvate monooxygenase (predicted) | Glycine max |
Tab. 4 Homologies of differential transcript derived genes to sequences in database
登录号 Accession No. | 大小 Length/bp | E值 E value | 同源性 Identity/% | 功能预测 Functional prediction | 来源 Source |
---|---|---|---|---|---|
BT143265 | 342 | 3E-32 | 80 | JCVI-FLLj-1K4未知mRNA JCVI-FLLj-1K4 unknown mRNA | Lotus japonicus |
DQ401328 | 248 | 1E-62 | 93 | ATP合成酶ATPase beta subunit | Cercis canadensis |
XM_003621654 | 449 | 1E-66 | 90 | 醛固酮还原酶Aldo/keto reductase | Medicago truncatula |
YP_008563132.1 | 270 | 9E-121 | 98 | 叶绿体RF2 Chloroplast RF2 | Solanum lycopersicum |
AY968436 | 215 | 2E-81 | 94 | ATP合成酶ATPase beta subunit | Gynostemma pentaphyllum |
AEL30361.1 | 287 | 2E-98 | 91 | NBS-LRR型抗病蛋白 NBS-LRR type disease resistance protein | Arachis hypogaea |
AEL30361.1 | 286 | 6E-98 | 93 | NBS-LRR型抗病蛋白 NBS-LRR type disease resistance protein | Arachis hypogaea |
YP_008563132.1 | 357 | 6E-114 | 99 | 叶绿体RF2 Chloroplast RF2 | Solanum lycopersicum |
XM_004293231 | 280 | 2E-73 | 88 | UPF0051蛋白(predicted) UPF0051 protein (predicted) | Fragaria vesca |
XM_007154190 | 472 | 5E-131 | 87 | 假设蛋白Hypothetical protein | Phaseolus vulgaris |
XR_137478 | 452 | 7E-149 | 89 | 蛋白酶启动子(predicted) Proteasome activator (predicted) | Glycine max |
XM_008340114 | 301 | 1E-5 | 97 | SCEI结合酶(预测) SUMO-conjugating enzyme SCE1 (predicted) | Malus domestica |
XM_003527773 | 441 | 6E-95 | 85 | 吲哚-3-丙酮酸盐单氧酶(predicted) Indole-3-pyruvate monooxygenase (predicted) | Glycine max |
Fig. 4 Expression profile of some selected differentially expressed genes in low-pi stress of Stylosanthes guianensis based on RT-PCR 1-4: Low-Pi stressed for 0, 1, 3, 7 d; ①: JCVI-FLLj-1K4 unknown mRNA; ②: NBS-LRR type disease resistance protein; ③: β-actin Reference gene; A: The results of cDNA-SRAP; B: The results of RT-PCR.
[1] | 文亦芾, 单贵莲, 姜飞, 等. 柱花草WRKY转录因子在低磷胁迫下的克隆与分析[J]. 西北植物学报, 2019,39(2):226-233. |
[2] | 余爱, 张海达, 吴露露, 等. 不同供磷水平对柱花草和黑籽雀稗根际生理活性的影响[J]. 热带农业科学, 2011,31(6):7-10. |
[3] | 杜育梅, 白昌军, 田江, 等. 柱花草适应酸性缺磷土壤的基因型差异及可能的生理机制[J]. 华南农业大学学报, 2008(4):6-11. |
[4] | 蔡小艳, 赖志强, 易显凤, 等. 我国南方柱花草的利用现状及发展对策[J].上海畜牧兽医通讯, 2010(3):51-53. |
[5] |
余爱, 杨帆, 张宇, 等. 不同施磷浓度对柱花草和黑籽雀稗根系分布的影响[J]. 草业学报, 2011,20(3):219-224.
DOI URL |
[6] | 杨茂, 严小龙. 酸性红壤区柱花草磷效率基因型差异[J].草地学报, 1999(2):113-120. |
[7] |
Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001,103(2-3):455-461.
DOI URL |
[8] |
张伟丽, 刘凤民, 刘艾. 柱花草SRAP-PCR体系优化及其遗传多样性分析[J]. 草业学报, 2011,20(4):159-168.
DOI URL |
[9] |
唐燕琼, 胡新文, 郭建春, 等. 柱花草种质遗传多样性的ISSR分析[J]. 草业学报, 2009,18(1):57-64.
DOI URL |
[10] | 蒋昌顺, 葛琴雅, 邹冬梅, 等. 柱花草RAPD反应体系的建立及其8个品种遗传多样性分析[J]. 广西植物, 2004(3):243-247, 292. |
[11] | 傅小霞, 漆智平, 何华玄. 柱花草单粒种子DNA提取和RAPD扩增[J]. 热带农业科学, 2004(3):28-30. |
[12] | 蒋昌顺, 贾虎森, 马欣荣, 等. 感病与抗病圭亚那柱花草遗传多样性的AFLP分析[J]. 植物学报, 2004,46(4):480-488. |
[13] | 蒋昌顺, 马欣荣, 邹冬梅, 等. 应用微卫星标记分析柱花草的遗传多样性[J]. 高技术通讯, 2004,14(4):25-30. |
[14] | 桂琴, 王嘉璐, 伍晓明, 等. SRAP-cDNA方法在植物基因差异表达分析中的应用[J]. 中国油料作物学报, 2007,29(4):497-502. |
[15] | 苏亮. 利用cDNA-SRAP技术分析玉米耐低磷基因的差异表达[D]. 太原: 山西大学, 2010. |
[16] | 赵凯歌, 王文颖, 陈龙清. 用cDNA-SRAP技术分离蜡梅花发育不同时期差异表达基因片段[J]. 华中农业大学学报, 2012,31(6):693-698. |
[17] | 吴建明, 李杨瑞, 王爱勤, 等. 利用cDNA-SRAP分析赤霉素诱导甘蔗节间伸长的差异表达[J]. 中国农业科学, 2010,43(19):3937-3944. |
[18] | 韩蓉蓉, 史亮涛, 刘国道, 等. 柱花草cDNA-SRAP反应体系的建立[J]. 草业与畜牧, 2015(2):8-11. |
[19] | 邓晓艳. 利用cDNA-AFLP技术分析棉花耐旱相关基因的表达[D]. 石河子: 石河子大学, 2010. |
[20] | 陈晓斌, 梁于朝, 孟磊, 等. 3种柱花草磷营养特性研究初探[J]. 安徽农业科学, 2008(23):9937-9938, 9943. |
[21] | 邹序生, 张启发, 谢瑞, 等. 烟草杂交组合Florda301× GDH94的杂种优势表现和cDNA-SRAP分析[J]. 分子植物育种, 2018,16(12):3989-3995. |
[22] | 曾黎琼, 韩蓉蓉, 段玉云, 等. 不同钾水平下花魔芋差异表达基因分析[J]. 中国蔬菜, 2016(4):38-41. |
[23] | 王晓, 沈程文, 周跃斌, 等. 茶树cDNA-SRAP体系正交优化研究[J]. 茶叶通讯, 2015,42(1):22-26. |
[24] |
张云霞, 宋立晓, 曾爱松, 等. 利用cDNA-SRAP分离结球甘蓝抗黑腐病相关基因的研究[J]. 华北农学报, 2014,29(5):29-32.
DOI URL |
[25] | 徐卫红. ATP合成酶及其功能机制综述[J]. 上饶师范学院学报(自然科学版), 2004(3):36-40, 78. |
[26] | 王彦玲. 我国玉米核心种质磷胁迫蛋白质表达差异和基因组SSR分析[D]. 郑州: 郑州大学, 2010. |
[27] | 薛莹莹, 孙守如, 孙德玺, 等. RGA法克隆NBS-LRR类抗病基因同源序列及其在葫芦科作物上应用的研究进展[J]. 中国瓜菜, 2014,27(3):1-4, 9. |
[1] | XIAO Tujian,MA Yuhua,YUAN Qifeng,XIE Pu,MAO Yongya,YAN Jiawen,LIAO Shiqin. Molecular Cloning and Expression Analysis of Rhythms Clock Output Gene HpGI from Hylocereus polyrhizus [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1298-1304. |
[2] | ZHANG Yu,YAN Linling,YU Daogeng,WANG Wenqiang,LIU Guodao. Germination Characteristics of 85 Introduced Stylosanthes Seed under PEG Stress [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 676-684. |
[3] | XU Zhijun,ZHAO Sheng,HU Xiaowen,KONG Ran,SU Junbo,LIU Yang. Development, Characterization and Speciality of Microsatellite Markers in AP85-441 and R570 Genomic Reference Sequences [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 722-729. |
[4] | JIA Yidan,HAN Jiarui,LI Jifu,WANG Guihua,LIU Pandao,LIU Guodao,LUO Lijuan,CHEN Zhijian. Effects of Excess Manganese on Secondary Metabolites, Enzyme Activity and SgPALs Gene Expression in Stylosanthes [J]. Chinese Journal of Tropical Crops, 2020, 41(3): 513-520. |
[5] | HUANG Rui,ZHAO Xingkun,YU Daogeng,LIU Pandao,LIU Guodao,WANG Wenqiang. Evaluation on the Capacity of Different Organic Phosphorus Utilization in Reyan No. 4 King Grass [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 850-856. |
[6] | LIU Pandao,HUANG Rui,XU Wenrong,LUO Jiajia,CHEN Zhijian,LIU Guodao. Research Progress of Purple Acid Phosphatase in Plants [J]. Chinese Journal of Tropical Crops, 2019, 40(2): 410-416. |
[7] | LIU Pandao,WU Xique,LUO Jiajia,XU Wenrong,LIU Guodao. Cloning and Expression of a Chitinase Gene SgGH19-1 from Stylosanthes and Its Enzymatic Properties Analysis [J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2411-2417. |
[8] | XU Xiaoqiong,CHEN Xiaohui,SHEN Xu,XU Xiaoping,LIN Yuling,LAI Zhongxiong. Genome-wide Identification and Expression Analysis of MSIL Gene Family During Somatic Embryogenesis in Dimocarpus longan Lour. [J]. Chinese Journal of Tropical Crops, 2019, 40(10): 1938-1948. |
[9] | DENG Sufang,CHENG Chunzhen,LIN Yuling,LAI Zhongxiong. miRNA Expression Profile and Target Gene Analysis of Different Color Peels in Wild Banana (Musa itinerans) [J]. Chinese Journal of Tropical Crops, 2019, 40(10): 1979-1990. |
[10] | FENG Jing, LU Jiang. Research Progress of Grape Flowering Molecular Biology [J]. Chinese Journal of Tropical Crops, 2018, 39(8): 1673-1681. |
[11] | ZENG Xianhai, JIAO Yunfei, LIAO Zirong, PAN Denglang LIN Weifu. Observation and Evaluation of Leaf Anatomical Features of Oil Palm Introduced in Different Regions in Guangdong Province [J]. Chinese Journal of Tropical Crops, 2018, 39(11): 2176-2185. |
[12] | TUO Decai SHEN Wentao YAN Pu LI Xiaoying ZHOU Peng. A Novel E. coli-Free Method for the Rapid Construction of Full-Length cDNA Infectious Clone of Papaya leaf distortion mosaic [J]. Chinese Journal of Tropical Crops, 2017, 38(8): 1492-1500. |
[13] | CAO Tianjun DAI Haofu LI Huiliang GUO Dong MEI Wenli PENG Shiqing. Cloning and Expression of DcbHLH1 in Dracaena cambodiana [J]. Chinese Journal of Tropical Crops, 2015, 36(9): 1602-1607. |
[14] | ZHAO Guangyuan TUO Decai SHEN Wentao LI Xiaoying ZHOU Peng. The Isolation and Infectious Clone Construction of Complete Genomic Sequence ofPapaya ringspot virus from Hainan Island China [J]. Chinese Journal of Tropical Crops, 2015, 36(5): 911-917. |
[15] | GUO Dong LI Huiliang YANG Ziping PENG Shiqing. Cloning and Expression of a New Farnesyl Pyrophosphate Synthase Gene in Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2015, 36(3): 441-447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||