Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (4): 779-786.DOI: 10.3969/j.issn.1000-2561.2020.04.020
• Agricultural Product Processing, Preservation, Storage, Analysis and Detection • Previous Articles Next Articles
FANG Yiming1,2,3,CHU Zhong1,2,3,GU Fenglin1,2,3,HE Shuzhen1,2,3,LAI Jianxiong1,2,3,*()
Received:
2019-04-13
Revised:
2019-09-06
Online:
2020-04-25
Published:
2020-05-09
Contact:
LAI Jianxiong
CLC Number:
FANG Yiming,CHU Zhong,GU Fenglin,HE Shuzhen,LAI Jianxiong. Optimization of Extraction of Procyanidin from Cocoa Bean of Hainan Using Response Surface Methodology[J]. Chinese Journal of Tropical Crops, 2020, 41(4): 779-786.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.04.020
因素Factor | 水平Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
A 乙醇浓度/% | 50 | 60 | 70 | 80 | 90 |
B 料液比/(g·mL-1) | 1∶5 | 1∶10 | 1∶15 | 1∶20 | 1∶25 |
C 提取时间/h | 0.5 | 1 | 1.5 | 2 | 2.5 |
D 提取温度/℃ | 45 | 55 | 65 | 75 | 85 |
Tab. 1 Factors and levels for single factor experiments
因素Factor | 水平Level | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
A 乙醇浓度/% | 50 | 60 | 70 | 80 | 90 |
B 料液比/(g·mL-1) | 1∶5 | 1∶10 | 1∶15 | 1∶20 | 1∶25 |
C 提取时间/h | 0.5 | 1 | 1.5 | 2 | 2.5 |
D 提取温度/℃ | 45 | 55 | 65 | 75 | 85 |
水平 Level | 因素Factor | |||
---|---|---|---|---|
A乙醇浓度 Ethanol concentration/% | B料液比 Material-to- liquid ratio /(g·mL-1) | C时间 Extraction time/h | D温度 Extraction temperature/℃ | |
-1 | 60 | 1∶15 | 1 | 65 |
0 | 70 | 1∶20 | 1.5 | 75 |
1 | 80 | 1∶25 | 2 | 85 |
Tab. 2 Factors and levels of RSM
水平 Level | 因素Factor | |||
---|---|---|---|---|
A乙醇浓度 Ethanol concentration/% | B料液比 Material-to- liquid ratio /(g·mL-1) | C时间 Extraction time/h | D温度 Extraction temperature/℃ | |
-1 | 60 | 1∶15 | 1 | 65 |
0 | 70 | 1∶20 | 1.5 | 75 |
1 | 80 | 1∶25 | 2 | 85 |
序号 Order | A | B | C | D | 原花青素提取得率 Extraction rate of procyanidin/% | 序号 Order | A | B | C | D | 原花青素提取得率 Extraction rate of procyanidin/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实际值 | 预测值 | 实际值 | 预测值 | ||||||||||
1 | 0 | 1 | 0 | 1 | 3.83 | 3.86 | 16 | 1 | 0 | 0 | -1 | 1.62 | 1.21 |
2 | -1 | 1 | 0 | 0 | 5.85 | 5.32 | 17 | 0 | 0 | 0 | 0 | 6.18 | 6.04 |
3 | 0 | 1 | -1 | 0 | 4.69 | 4.58 | 18 | 1 | 0 | 1 | 0 | 2.00 | 2.02 |
4 | -1 | 0 | 0 | -1 | 3.12 | 3.21 | 19 | 0 | 0 | -1 | 1 | 3.26 | 3.17 |
5 | -1 | 0 | 1 | 0 | 4.15 | 4.11 | 20 | 0 | 0 | 0 | 0 | 6.01 | 6.04 |
6 | 0 | 1 | 0 | -1 | 2.73 | 3.22 | 21 | 0 | 0 | 0 | 0 | 5.94 | 6.04 |
7 | 0 | -1 | 0 | 1 | 4.37 | 4.00 | 22 | 1 | -1 | 0 | 0 | 3.31 | 3.53 |
8 | 0 | 0 | 1 | -1 | 2.50 | 2.27 | 23 | 0 | -1 | -1 | 0 | 4.44 | 4.42 |
9 | 0 | 0 | 1 | 1 | 3.38 | 3.10 | 24 | -1 | 0 | 0 | 1 | 3.17 | 3.77 |
10 | 0 | -1 | 0 | -1 | 3.36 | 3.45 | 25 | 1 | 1 | 0 | 0 | 2.61 | 2.52 |
11 | 1 | 0 | 0 | 1 | 1.73 | 1.83 | 26 | 0 | 0 | 0 | 0 | 5.81 | 6.04 |
12 | 0 | -1 | 1 | 0 | 4.15 | 4.46 | 27 | -1 | -1 | 0 | 0 | 4.90 | 4.68 |
13 | 0 | 1 | 1 | 0 | 3.71 | 3.93 | 28 | 0 | 0 | 0 | 0 | 6.24 | 6.04 |
14 | -1 | 0 | -1 | 0 | 4.20 | 4.30 | 29 | 0 | 0 | -1 | -1 | 2.85 | 2.82 |
15 | 1 | 0 | -1 | 0 | 2.30 | 2.45 |
Tab. 3 Results of response surface methodology
序号 Order | A | B | C | D | 原花青素提取得率 Extraction rate of procyanidin/% | 序号 Order | A | B | C | D | 原花青素提取得率 Extraction rate of procyanidin/% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
实际值 | 预测值 | 实际值 | 预测值 | ||||||||||
1 | 0 | 1 | 0 | 1 | 3.83 | 3.86 | 16 | 1 | 0 | 0 | -1 | 1.62 | 1.21 |
2 | -1 | 1 | 0 | 0 | 5.85 | 5.32 | 17 | 0 | 0 | 0 | 0 | 6.18 | 6.04 |
3 | 0 | 1 | -1 | 0 | 4.69 | 4.58 | 18 | 1 | 0 | 1 | 0 | 2.00 | 2.02 |
4 | -1 | 0 | 0 | -1 | 3.12 | 3.21 | 19 | 0 | 0 | -1 | 1 | 3.26 | 3.17 |
5 | -1 | 0 | 1 | 0 | 4.15 | 4.11 | 20 | 0 | 0 | 0 | 0 | 6.01 | 6.04 |
6 | 0 | 1 | 0 | -1 | 2.73 | 3.22 | 21 | 0 | 0 | 0 | 0 | 5.94 | 6.04 |
7 | 0 | -1 | 0 | 1 | 4.37 | 4.00 | 22 | 1 | -1 | 0 | 0 | 3.31 | 3.53 |
8 | 0 | 0 | 1 | -1 | 2.50 | 2.27 | 23 | 0 | -1 | -1 | 0 | 4.44 | 4.42 |
9 | 0 | 0 | 1 | 1 | 3.38 | 3.10 | 24 | -1 | 0 | 0 | 1 | 3.17 | 3.77 |
10 | 0 | -1 | 0 | -1 | 3.36 | 3.45 | 25 | 1 | 1 | 0 | 0 | 2.61 | 2.52 |
11 | 1 | 0 | 0 | 1 | 1.73 | 1.83 | 26 | 0 | 0 | 0 | 0 | 5.81 | 6.04 |
12 | 0 | -1 | 1 | 0 | 4.15 | 4.46 | 27 | -1 | -1 | 0 | 0 | 4.90 | 4.68 |
13 | 0 | 1 | 1 | 0 | 3.71 | 3.93 | 28 | 0 | 0 | 0 | 0 | 6.24 | 6.04 |
14 | -1 | 0 | -1 | 0 | 4.20 | 4.30 | 29 | 0 | 0 | -1 | -1 | 2.85 | 2.82 |
15 | 1 | 0 | -1 | 0 | 2.30 | 2.45 |
来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型 | 51.97 | 14 | 3.71 | 29.22 | <0.0001 | ** |
A | 11.64 | 1 | 11.64 | 91.64 | <0.0001 | ** |
B | 0.10 | 1 | 0.10 | 0.81 | 0.3839 | |
C | 0.29 | 1 | 0.29 | 2.24 | 0.1563 | |
D | 1.06 | 1 | 1.06 | 8.31 | 0.0120 | * |
AB | 0.68 | 1 | 0.68 | 5.36 | 0.0363 | * |
AC | 0.016 | 1 | 0.016 | 0.12 | 0.7310 | |
AD | 0.0009 | 1 | 0.0009 | 0.0071 | 0.9341 | |
BC | 0.12 | 1 | 0.12 | 0.94 | 0.3495 | |
BD | 0.00203 | 1 | 0.00203 | 0.016 | 0.9013 | |
CD | 0.055 | 1 | 0.055 | 0.43 | 0.5204 | |
A2 | 16.08 | 1 | 16.08 | 126.52 | <0.0001 | ** |
B2 | 1.32 | 1 | 1.32 | 10.36 | 0.0062 | ** |
C2 | 9.98 | 1 | 9.98 | 78.56 | <0.0001 | ** |
D2 | 24.77 | 1 | 24.77 | 194.98 | <0.0001 | ** |
残差 | 1.78 | 14 | 0.13 | |||
失拟项 | 1.66 | 10 | 0.17 | 5.37 | 0.0598 | |
纯误差 | 0.12 | 4 | 0.031 | |||
总离差 | 53.75 | 28 |
Tab. 4 Results of variance for regression model
来源 Source | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型 | 51.97 | 14 | 3.71 | 29.22 | <0.0001 | ** |
A | 11.64 | 1 | 11.64 | 91.64 | <0.0001 | ** |
B | 0.10 | 1 | 0.10 | 0.81 | 0.3839 | |
C | 0.29 | 1 | 0.29 | 2.24 | 0.1563 | |
D | 1.06 | 1 | 1.06 | 8.31 | 0.0120 | * |
AB | 0.68 | 1 | 0.68 | 5.36 | 0.0363 | * |
AC | 0.016 | 1 | 0.016 | 0.12 | 0.7310 | |
AD | 0.0009 | 1 | 0.0009 | 0.0071 | 0.9341 | |
BC | 0.12 | 1 | 0.12 | 0.94 | 0.3495 | |
BD | 0.00203 | 1 | 0.00203 | 0.016 | 0.9013 | |
CD | 0.055 | 1 | 0.055 | 0.43 | 0.5204 | |
A2 | 16.08 | 1 | 16.08 | 126.52 | <0.0001 | ** |
B2 | 1.32 | 1 | 1.32 | 10.36 | 0.0062 | ** |
C2 | 9.98 | 1 | 9.98 | 78.56 | <0.0001 | ** |
D2 | 24.77 | 1 | 24.77 | 194.98 | <0.0001 | ** |
残差 | 1.78 | 14 | 0.13 | |||
失拟项 | 1.66 | 10 | 0.17 | 5.37 | 0.0598 | |
纯误差 | 0.12 | 4 | 0.031 | |||
总离差 | 53.75 | 28 |
Fig. 6 Analysis of model adequacy A: Relationship between predicted values versus experimental values; B: Relationship between residuals versus predicted values.
[1] | 房一明, 谷风林, 初众 , 等. 发酵方式对海南可可豆特性和风味的影响分析[J]. 热带农业科学, 2012,32(2):71-75. |
[2] |
易桥宾, 谷风林, 那治国 , 等. 发酵和焙烤对可可豆多酚、黄酮和风味品质的影响[J]. 食品科学, 2015,36(15):62-69.
DOI URL |
[3] |
Othman A, Ismail A, Abdul Ghani N , et al. Antioxidant capacity and phenolic content of cocoa beans[J]. Food Chemistry, 2007,100(4):1523-1530.
DOI URL |
[4] |
Steinberg F M, Bearden M M, Keen C L . Cocoa and chocolate flavonoids: Implications for cardiovascular health[J]. Journal of the American Dietetic Association, 2003,103(2):215-223.
DOI URL PMID |
[5] |
Guyot S, Marnet N, Laraba D , et al. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien)[J]. Journal of Agricultural and Food Chemistry, 1998,46(5):1698-1705.
DOI URL |
[6] |
Santos-Buelga C, Scalbert A . Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health[J]. Journal of the Science of Food and Agriculture, 2000,80(7):1094-1117.
DOI URL |
[7] | 谷风林, 房一明, 徐飞 , 等. 发酵方式与萃取条件对海南可可豆多酚含量的影响[J]. 中国食品学报, 2013,13(8):268-273. |
[8] |
Nazaruddin R, Seng L K, Hassan O , et al. Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma Cacao) during fermentation[J]. Industrial Crops and Products, 2006,24(1):87-94.
DOI URL |
[9] |
Gultekin Ozguven M, Berktas I, Ozcelik B . Change in stability of procyanidins, antioxidant capacity and in-vitro bioac-cessibility during processing of cocoa powder from cocoa beans[J]. LWT-Food Science and Technology, 2016, 72: 559-565.
DOI URL |
[10] | 陈健, 孙爱东, 高雪娟 , 等. 响应面分析法优化超声波提取槟榔原花青素工艺[J]. 食品科学, 2011,32(4):82-86. |
[11] | 彭芳刚, 李绮丽, 吴卫国 . 响应面法优化红莲外皮原花青素的提取工艺研究[J]. 现代食品科技, 2013,29(6):1349-1354, 1315. |
[12] | Minifie B W . Chocolate, cocoa and confectionery: science and technology[M]. Netherlands: Springer, 1989. |
[13] |
Ma X, Zhou X Y, Qiang Q Q , et al. Ultrasound-assisted extraction and preliminary purification of proanthocyanidins and chlorogenic acid from almond (Prunus dulcis) skin[J]. Journal of Separation Science, 2014,37(14):1834-1841.
DOI URL |
[14] | 樊梓鸾, 林秀芳, 王丽 , 等. 响应面法优化高剪切分散乳化提取悬钩子多酚[J]. 食品与生物技术学报, 2014,33(4):355-360. |
[15] | 温志英, 曹妍 . 响应面法优化花生红衣原花青素微波辅助提取工艺[J]. 中国粮油学报, 2011,26(6):97-101. |
[16] |
黄曼, 徐丽嫚, 陈静 , 等. 响应面法优化高粱外种皮中原花青素的超声波辅助提取工艺[J]. 食品科学, 2012,33(24):26-30.
DOI URL |
[17] | 王长春, 林向阳, 叶南慧 , 等. Plackett Burman设计和响应面分析法优化枇杷叶中总黄酮的超声波提取工艺[J]. 中国食品学报, 2013,13(3):84-91. |
[18] |
黄尚荣, 杨雪娜, 张露 , 等. 龙眼皮原花青素提取工艺优化及其抗氧化活性测定[J]. 食品科学, 2014,35(10):68-75.
DOI URL |
[19] |
王海燕, 李睿, 曾秀 , 等. 响应面优化超声波提取桑叶槲皮素工艺[J]. 食品科学, 2014,35(22):56-62.
DOI URL |
[20] |
Gunst R F . Response Surface methodology: process and product optimization using designed experiments[J]. Technometrics, 1996,38(3):284-286.
DOI URL |
[21] |
Kuo C H, Chen B Y, Liu Y C , et al. Optimized ultrasound-assisted extraction of phenolic compounds from polygonum cuspidatum[J]. Molecules, 2013,19(1):67-77.
DOI URL PMID |
[22] | 焦天慧, 芦宇, 叶琳琳 , 等. 超声波辅助提取红树莓籽中原花青素及其抗紫外活性评价[J]. 中国食品学报, 2019,19(6):98-105. |
[23] |
Gu L W, House S E, Wu X L , et al. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products[J]. Agricultural and Food Chemistry, 2006,54(11):4057-4061.
DOI URL PMID |
[1] | HUANG Qiong,HUANG Xiaomei. Ultrasound-microwave Assisted Extraction and Antioxidant Activity of Total Flavonoids from Hibiscus sabdariffa L. [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1242-1250. |
[2] | ZHANG Yanjun ZHU Hongmei TIAN Jianwen XU Fei CHU Zhong. Formulation and Preparation Technique of Vanilla Oil Microcapsuled by Jackfruit Seed Starch [J]. Chinese Journal of Tropical Crops, 2017, 38(6): 1127-1133. |
[3] | XUE Yaru , CAO Ran , LU Xu , ZHANG Yi. Response Surface Model Optimization of Oligosaccharide Extraction from Coix Seed by Ultrasonic-assisted Technology#br# [J]. Chinese Journal of Tropical Crops, 2017, 38(3): 565-571. |
[4] | ZANG Tao XIANG Dong. Optimization of Water Extraction of Total Polyphenols from Nymphaea stellata Willd by Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2017, 38(12): 2366-2375. |
[5] | DAI Yanli SHEN Weizhi LIAO Sentai LIU Fan WANG Siyuan HU Genteng ZOU Yuxiao. Optimization of Ultrasonic-assisted Extraction Process of Mulberry Polyphenols Using Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1588-1594. |
[6] | ZHANG Yan WU Jijun LIU Xueming WANG Siyuan FU Manqin. Optimization of Extraction Process for Pectin from the Pericarp of Pomelo by Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1595-1600. |
[7] | ZHANG Ronghu XIA Yijie DOU Zhihao HE Ai XIE Hui DENG Hao FENG Jiancheng. Optimization of Extracting Technology and Antioxidant Activity in vitro of Polyphenol from Pericarp of Baccaurea [J]. Chinese Journal of Tropical Crops, 2016, 37(5): 1009-1016. |
[8] | MENG Qixuan WU Yougen CUI Mengyuan YUAN Langxing ZHANG Junfeng. Optimization of Ultrasonic-Assisted Extraction of Polyphenol from NONI Using Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2015, 36(9): 1672-1679. |
[9] | LI Jing ZHAO Qingsheng ZHOU Weijie ZHAO Shihao. Optimization of Ultrasonic-assisted Extraction of Polysaccharides from Blueberries by Response Surface Analysis [J]. Chinese Journal of Tropical Crops, 2015, 36(8): 1491-1497. |
[10] | WANG Jie ZHAO Lixia LEI Jiandu HE Jing GUO Liqun. Study on Optimization of Extraction Technology of Ursolic Acid from Eriobotrya japonica Leaves by Response Surface Method and [J]. Chinese Journal of Tropical Crops, 2015, 36(8): 1518-1524. |
[11] | LIN Xiaohong CHEN Shenru. Parameter Studies of Process Optimization for Carotenoid Extraction from Revolution Gold [J]. Chinese Journal of Tropical Crops, 2015, 36(5): 991-998. |
[12] | LU Xu ZHANG Shuai LIN Shan WU Xiaoting ZHANG Yi ZHENG Baodong. Optimization of Extraction Process and Composition Analysis of Lotus Seed Oligosaccharides [J]. Chinese Journal of Tropical Crops, 2015, 36(4): 813-820. |
[13] | LI Hui WU Qiaomei LIN Fuxing LIN Yixion LIN Hetong. Optimization of Osmotic Dehydration Conditions of Papaya Pieces Using Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2015, 36(3): 611-616. |
[14] | WANG Jianchao WANG Qing SHI Wenhao QI Fangbin CHEN Faxing. Optimization of Extraction Techniques of Polyphenols from Loquat Leaf by Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2015, 36(2): 384-390. |
[15] | GU Fenglin YI Qiaobin NA Zhiguo FANG Yiming ZHAO Youxing XU Fei. Processing Quality of Cocoa Beans Based on Sensory and Principal Components Analysis [J]. Chinese Journal of Tropical Crops, 2015, 36(10): 1879-1888. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||