Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (4): 722-729.DOI: 10.3969/j.issn.1000-2561.2020.04.013
• Biotechnology and Tissue Culture • Previous Articles Next Articles
XU Zhijun1,2,3,ZHAO Sheng4,HU Xiaowen1,2,3,KONG Ran1,2,3,SU Junbo1,2,3,LIU Yang1,2,3,*()
Received:
2019-06-06
Revised:
2019-09-16
Online:
2020-04-25
Published:
2020-05-09
Contact:
LIU Yang
CLC Number:
XU Zhijun,ZHAO Sheng,HU Xiaowen,KONG Ran,SU Junbo,LIU Yang. Development, Characterization and Speciality of Microsatellite Markers in AP85-441 and R570 Genomic Reference Sequences[J]. Chinese Journal of Tropical Crops, 2020, 41(4): 722-729.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.04.013
重复单元类型 Repeat unit type | 基序种类 Motif | SSR位点数量 SSR number | 比例 Ratio/% | 优势基序Dominating motif | ||
---|---|---|---|---|---|---|
基序类型Motif type | 数量Number | 比例Ratio/% | ||||
单核苷酸 | 4 | 230 315 | 44.91 | A/T | 124 986 | 54.27 |
二核苷酸 | 12 | 137 466 | 26.81 | AT/AT | 20 228 | 14.71 |
三核苷酸 | 60 | 128 309 | 25.02 | AAG/CTT | 18 276 | 14.24 |
四核苷酸 | 231 | 9 889 | 1.93 | AAAT/ATTT | 1 034 | 10.46 |
五核苷酸 | 662 | 3 565 | 0.70 | AAAAG/CTTTT | 309 | 8.67 |
六核苷酸 | 980 | 3 291 | 0.64 | AGATAT/ATATCT | 217 | 6.59 |
总计 | 1 949 | 512 835 |
Tab. 1 Distribution of SSR loci in Saccharum spontaneum genome
重复单元类型 Repeat unit type | 基序种类 Motif | SSR位点数量 SSR number | 比例 Ratio/% | 优势基序Dominating motif | ||
---|---|---|---|---|---|---|
基序类型Motif type | 数量Number | 比例Ratio/% | ||||
单核苷酸 | 4 | 230 315 | 44.91 | A/T | 124 986 | 54.27 |
二核苷酸 | 12 | 137 466 | 26.81 | AT/AT | 20 228 | 14.71 |
三核苷酸 | 60 | 128 309 | 25.02 | AAG/CTT | 18 276 | 14.24 |
四核苷酸 | 231 | 9 889 | 1.93 | AAAT/ATTT | 1 034 | 10.46 |
五核苷酸 | 662 | 3 565 | 0.70 | AAAAG/CTTTT | 309 | 8.67 |
六核苷酸 | 980 | 3 291 | 0.64 | AGATAT/ATATCT | 217 | 6.59 |
总计 | 1 949 | 512 835 |
重复单元类型 Repeat unit type | 基序种类 Motif | SSR位点数量 SSR number | 比例 Ratio/% | 优势基序Dominating motif | ||
---|---|---|---|---|---|---|
基序类型Motif type | 数量Number | 比例Ratio/% | ||||
单核苷酸 | 4 | 47 243 | 48.29 | A/T | 39 923 | 84.51 |
二核苷酸 | 12 | 26 295 | 26.88 | AT/AT | 11 844 | 45.04 |
三核苷酸 | 60 | 20 562 | 21.02 | CCG/CGG | 4 356 | 21.18 |
四核苷酸 | 210 | 2 081 | 2.13 | AAAT/ATTT | 482 | 23.16 |
五核苷酸 | 368 | 975 | 1.00 | AAAAG/CTTTT | 128 | 13.13 |
六核苷酸 | 408 | 683 | 0.70 | AGATAT/ATATCT | 110 | 16.11 |
总计 | 1 062 | 97 839 |
Tab. 2 Distribution of SSR loci in high quality reference sequence of sugarcane genome
重复单元类型 Repeat unit type | 基序种类 Motif | SSR位点数量 SSR number | 比例 Ratio/% | 优势基序Dominating motif | ||
---|---|---|---|---|---|---|
基序类型Motif type | 数量Number | 比例Ratio/% | ||||
单核苷酸 | 4 | 47 243 | 48.29 | A/T | 39 923 | 84.51 |
二核苷酸 | 12 | 26 295 | 26.88 | AT/AT | 11 844 | 45.04 |
三核苷酸 | 60 | 20 562 | 21.02 | CCG/CGG | 4 356 | 21.18 |
四核苷酸 | 210 | 2 081 | 2.13 | AAAT/ATTT | 482 | 23.16 |
五核苷酸 | 368 | 975 | 1.00 | AAAAG/CTTTT | 128 | 13.13 |
六核苷酸 | 408 | 683 | 0.70 | AGATAT/ATATCT | 110 | 16.11 |
总计 | 1 062 | 97 839 |
Fig. 2 Synteny analysis of homologous genes between Sorghum bicolor and Saccharum spontaneum, Saccharum spp. The gray line represents the gene homologous with sorghum gene. The blue line represents the common gene homologous with sorghum, sugar cane and sorghum.
高粱染色体Sorghum bicolor | 栽培种甘蔗单倍体序列 Saccharum spp. mosaic haploid reference sequence | 栽培种甘蔗-割手密同源基因 Homologous genes between the three genomes | 割手密单倍体基因组 Saccharum spontaneum genome | ||||
---|---|---|---|---|---|---|---|
同源基因数 Number of homologous genes | 包含SSR位点 基因数 Number of genes contain SSR | SSR位点数 Number of SSR | 同源基因数 Number of homologous genes | 包含SSR位点基因数 Number of genes contain SSR | SSR位点数 Number of SSR | ||
Sb01 | 2 774 | 609 | 1 771 | 1 512 | 2 964 | 1 430 | 2 482 |
Sb02 | 1 732 | 635 | 976 | 1 167 | 2 249 | 988 | 1 714 |
Sb03 | 2 201 | 912 | 1 356 | 1 462 | 2 548 | 1 218 | 2 078 |
Sb04 | 1 961 | 802 | 1 198 | 1 324 | 2 270 | 1 109 | 1 938 |
Sb05 | 607 | 218 | 350 | 433 | 975 | 461 | 873 |
Sb06 | 969 | 383 | 559 | 654 | 1 294 | 607 | 1 010 |
Sb07 | 793 | 316 | 456 | 627 | 1 123 | 528 | 911 |
Sb08 | 529 | 203 | 307 | 369 | 777 | 365 | 644 |
Sb09 | 823 | 308 | 457 | 632 | 1 168 | 560 | 939 |
Sb10 | 882 | 380 | 628 | 674 | 1 323 | 621 | 1 119 |
合计 | 13 271 | 4 766 | 8 059 | 8 854 | 16 691 | 7 887 | 13 708 |
Tab. 3 Distribution of homologous genes location on sorghum genome and gene-associated SSR locus between Sorghum bicolor and Saccharum spontaneum, Saccharum spp.
高粱染色体Sorghum bicolor | 栽培种甘蔗单倍体序列 Saccharum spp. mosaic haploid reference sequence | 栽培种甘蔗-割手密同源基因 Homologous genes between the three genomes | 割手密单倍体基因组 Saccharum spontaneum genome | ||||
---|---|---|---|---|---|---|---|
同源基因数 Number of homologous genes | 包含SSR位点 基因数 Number of genes contain SSR | SSR位点数 Number of SSR | 同源基因数 Number of homologous genes | 包含SSR位点基因数 Number of genes contain SSR | SSR位点数 Number of SSR | ||
Sb01 | 2 774 | 609 | 1 771 | 1 512 | 2 964 | 1 430 | 2 482 |
Sb02 | 1 732 | 635 | 976 | 1 167 | 2 249 | 988 | 1 714 |
Sb03 | 2 201 | 912 | 1 356 | 1 462 | 2 548 | 1 218 | 2 078 |
Sb04 | 1 961 | 802 | 1 198 | 1 324 | 2 270 | 1 109 | 1 938 |
Sb05 | 607 | 218 | 350 | 433 | 975 | 461 | 873 |
Sb06 | 969 | 383 | 559 | 654 | 1 294 | 607 | 1 010 |
Sb07 | 793 | 316 | 456 | 627 | 1 123 | 528 | 911 |
Sb08 | 529 | 203 | 307 | 369 | 777 | 365 | 644 |
Sb09 | 823 | 308 | 457 | 632 | 1 168 | 560 | 939 |
Sb10 | 882 | 380 | 628 | 674 | 1 323 | 621 | 1 119 |
合计 | 13 271 | 4 766 | 8 059 | 8 854 | 16 691 | 7 887 | 13 708 |
SSR标记来源 SSR origin | DNA模板 DNA template | SSR标记数 Number of SSR | 扩增位点 Amplified loci | 有效扩增位点 Valid amplified loci | 有效标记数 Valid markers | 单位点扩增标记数 Single-locus amplified markers | |
---|---|---|---|---|---|---|---|
单基因组 Single genome | 双基因组 Double genomes | ||||||
割手密 | 割手密 | 13 224 | 142 095 | 139 083 | 10 493 | 1 368 | 196 |
97.88% | 79.35% | ||||||
甘蔗 | 12 404 | 12 142 | 4 779 | — | |||
97.88% | 36.13% | ||||||
甘蔗 | 割手密 | 7 624 | 54 508 | 52 769 | 6 024 | — | 556 |
96.81% | 79.01% | ||||||
甘蔗 | 13 459 | 13 406 | 7 118 | 1 420 | |||
99.60% | 93.36% |
Tab. 4 Statistics of e-PCR amplification locus by gene-associated SSR primers
SSR标记来源 SSR origin | DNA模板 DNA template | SSR标记数 Number of SSR | 扩增位点 Amplified loci | 有效扩增位点 Valid amplified loci | 有效标记数 Valid markers | 单位点扩增标记数 Single-locus amplified markers | |
---|---|---|---|---|---|---|---|
单基因组 Single genome | 双基因组 Double genomes | ||||||
割手密 | 割手密 | 13 224 | 142 095 | 139 083 | 10 493 | 1 368 | 196 |
97.88% | 79.35% | ||||||
甘蔗 | 12 404 | 12 142 | 4 779 | — | |||
97.88% | 36.13% | ||||||
甘蔗 | 割手密 | 7 624 | 54 508 | 52 769 | 6 024 | — | 556 |
96.81% | 79.01% | ||||||
甘蔗 | 13 459 | 13 406 | 7 118 | 1 420 | |||
99.60% | 93.36% |
SSR来源 SSR origin | DNA模板 DNA template | SSR标记数 Number of SSR | 来源基因SSR origin genes | SSR位点密度 SSR loci density | ||
---|---|---|---|---|---|---|
多位点基因 Multilocus genes | 单位点基因 Single locus genes | 合计 Total | ||||
割手密 | 割手密 | 1368 | 164 | 967 | 1130 | 1.21 |
割手密-甘蔗 | 196 | 11 | 174 | 185 | 1.06 | |
甘蔗 | 甘蔗 | 1420 | 143 | 1078 | 1221 | 1.16 |
割手密-甘蔗 | 556 | 45 | 458 | 503 | 1.11 | |
合计 | 3540 | 363 | 2677 | 3040 | 1.16 |
Tab. 5 Statistics of single-locus amplification SSR markers associated genes
SSR来源 SSR origin | DNA模板 DNA template | SSR标记数 Number of SSR | 来源基因SSR origin genes | SSR位点密度 SSR loci density | ||
---|---|---|---|---|---|---|
多位点基因 Multilocus genes | 单位点基因 Single locus genes | 合计 Total | ||||
割手密 | 割手密 | 1368 | 164 | 967 | 1130 | 1.21 |
割手密-甘蔗 | 196 | 11 | 174 | 185 | 1.06 | |
甘蔗 | 甘蔗 | 1420 | 143 | 1078 | 1221 | 1.16 |
割手密-甘蔗 | 556 | 45 | 458 | 503 | 1.11 | |
合计 | 3540 | 363 | 2677 | 3040 | 1.16 |
[1] | Varshney R K, Tuberosa R . Translational genomics for crop breeding: Biotic stress Yield and Quality (Volume 1)[M]. New Jersey: John Wiley & Sons, Inc, 2013: 1-9. |
[2] | 苏俊波 . 新形势下我国甘蔗产业竞争力研究[D]. 福州: 福建农林大学, 2016. |
[3] | 李明, 田洪春, 黄智刚 . 我国甘蔗产业发展现状研究[J]. 中国糖料, 2017,39(1):67-70. |
[4] |
D'hont A, Lu Y H, León D G D , et al. A molecular approach to unraveling the genetics of sugarcane, a complex polyploid of the Andropogoneae tribe[J]. Genome, 1994,37(2):222-230.
DOI URL PMID |
[5] |
Grivet L, D'hont A, Roques D , et al. RFLP mapping in cultivated sugarcane (Saccharum spp.): Genome organization in a highly polyploid and aneuploid interspecific hybrid[J]. Genetics, 1996,142(3):987-1000.
URL PMID |
[6] |
Ming R, Liu S C, Lin Y R , et al. Detailed alignment of saccharum and sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes[J]. Genetics, 1998,150(4):1663-1682.
URL PMID |
[7] |
Hoarau J Y, Offmann B, D’Hont A , et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers[J]. Theoretical & Applied Genetics, 2001,103(1):84-97.
DOI URL PMID |
[8] |
Rossi M, Araujo P G, Paulet F , et al. Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane[J]. Molecular Genetics & Genomics Mgg, 2003,269(3):406-419.
DOI URL PMID |
[9] |
Aitken K S, Jackson P A, Mcintyre C L . A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar[J]. Theoretical and Applied Genetics, 2005,110(5):789-801.
DOI URL |
[10] |
Aitken K S, Mcneil M D, Hermann S , et al. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers[J]. BMC Genomics, 2014,15(1):152.
DOI URL PMID |
[11] |
Raboin L M, Oliveira K M, Lecunff L , et al. Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene[J]. Theoretical & Applied Genetics, 2006,112(7):1382-1391.
DOI URL PMID |
[12] |
刘新龙, 毛钧, 陆鑫 , 等. 甘蔗SSR和AFLP分子遗传连锁图谱构建[J]. 作物学报, 2010,36(1):177-183.
DOI URL |
[13] |
Balsalobre T W A, Pereira G D S, Margarido G R A , et al. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane[J]. BMC Genomics, 2017,18(1):72.
DOI URL PMID |
[14] |
Aitken K S, Hermann S, Karno K , et al. Genetic control of yield related stalk traits in sugarcane[J]. Theoretical & Applied Genetics, 2008,117(7):1191-1203.
DOI URL PMID |
[15] |
Hoarau J Y, Grivet L, Offmann B , et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.).II. Detection of QTLs for yield components[J]. Theoretical & Applied Genetics, 2002,105(6-7):1027-1037.
DOI URL PMID |
[16] |
Ming R, Liu S C, Moore P H , et al. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane[J]. Genome Research, 2001,11(12):2075-2084.
DOI URL PMID |
[17] |
Piperidis N, Jackson P A, Angelique D H , et al. Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations[J]. Molecular Breeding, 2008,21(2):233-247.
DOI URL |
[18] |
Debibakas S, Rocher S, Garsmeur O , et al. Prospecting sugarcane resistance to sugarcane yellow leaf virus by genome-wide association[J]. Theoretical & Applied Genetics, 2014,127(8):1719-1732.
DOI URL PMID |
[19] |
Wei X, Jackson P A, McIntyre C L , et al. Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure[J]. Theoretical and Applied Genetics, 2006,114(1):155-164.
DOI URL |
[20] |
Gouy M, Rousselle Y, Chane A T , et al. Genome wide association mapping of agro-morphological and disease resistance traits in sugarcane[J]. Euphytica, 2015,202(2):269-284.
DOI URL |
[21] |
Zhang J, Zhang X, Tang H , et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.[J]. Nature Genetics, 2018,50(11):1565-1573.
DOI URL PMID |
[22] |
Garsmeur O, Droc G, Antonise R , et al. A mosaic monoploid reference sequence for the highly complex genome of sugarcane[J]. Nature Communications, 2018,9(1):2638.
DOI URL PMID |
[23] |
Deng P, Wang M, Feng K , et al. Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution[J]. Scientific Reports, 2016,6:32224.
DOI URL PMID |
[24] |
D'Hont A, Grivet L, Feldmann P , et al. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics[J]. Molecular and General Genetics, 1996,250(4):405-413.
DOI URL PMID |
[25] |
D'hont A, Ison D, Alix K , et al. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes[J]. Genome, 1998,41(2):221-225.
DOI URL |
[26] |
Piperidis G, Piperidis N D’Hont A, . Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane[J]. Molecular Genetics and Genomics, 2010,284(1):65-73.
DOI URL PMID |
[27] |
Nair N V, Selvi A, Sreenivasan T V , et al. Molecular diversity in Indian sugarcane cultivars as revealed by randomly amplified DNA polymorphisms[J]. Euphytica, 2002,127(2):219-225.
DOI URL |
[28] |
Selvi A, Nair N V, Noyer J L , et al. Genomic constitution and genetic relationship among the tropical and subtropical Indian sugarcane cultivars revealed by AFLP[J]. Crop Science, 2005,45(5):1750-1757.
DOI URL |
[29] |
Singh R K, Singh R B, Singh S P , et al. Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane hybrids using c-DNA and unigene derived markers[J]. World Journal of Microbiology and Biotechnology, 2012,28(4):1669-1679.
DOI URL PMID |
[30] |
Singh R B, Singh B, Singh R K . Development of potential dbEST-derived microsatellite markers for genetic evaluation of sugarcane and related cereal grasses[J]. Industrial Crops and Products, 2019,128:38-47.
DOI URL |
[1] | KUANG Bowen, ZHAO Jihan, LI Sicheng, WEI Ni, FENG Mengfan, YANG Xiping. Bioinformatics Analysis and Function Prediction of CesA7 Gene in Sugarcane [J]. Chinese Journal of Tropical Crops, 2023, 44(7): 1337-1347. |
[2] | ZHOU Shan, HUANG Yuxin, DUAN Weixing, GAO Yijing, YANG Cuifang, ZHOU Zhongfeng, LU Shanyu, ZHANG Gemin, ZHANG Baoqing. Genetic Diversity Assessment of Sugarcane Native of Domestic with Phenotypic Traits [J]. Chinese Journal of Tropical Crops, 2023, 44(6): 1123-1134. |
[3] | XU Chaohua, LIU Hongbo, QIN Wei, MAO Jun, LIN Xiuqin, LU Xin. Investigation and Phenotypic Traits Analysis of Wild Sugarcane Germplasm Resource in Southwest Guizhou Autonomous Prefecture of China [J]. Chinese Journal of Tropical Crops, 2023, 44(6): 1135-1145. |
[4] | KANG Qianwen, XU Weiheng, WANG Leiguang, HONG Zehu, LIU Yun. Extraction of Sugarcane Plantation in Mountainous Areas Based on Landsat-8 and Sentinel-2 Time-series Synthetic Images [J]. Chinese Journal of Tropical Crops, 2023, 44(6): 1276-1287. |
[5] | GUO Qiang, MO Jianwen, JIANG Qingmei, HE Hongliang, MA Wenqing, MO Yongwu, TANG Liqiu. Evaluation on Adaptation in New Sugarcane Lines by Multiple Statistics Analysis [J]. Chinese Journal of Tropical Crops, 2023, 44(4): 699-705. |
[6] | YANG Ting, SHEN Shiyan, WANG Zhineng, YANG Liu, SHANG Shixiong, CUI Jie, YING Xiongmei. Analysis and Evaluation of Nutritional Quality of 100 Sugarcane Germplasm Resources [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 484-493. |
[7] | TANG Mei, SUN Fu, HE Cong, LU Hongcong, HUANG Li, XIA Xiuzhong, TANG Zhongping, ZHONG Zhijian, LU Guiyao. Genetic Diversity Analysis of 24 Guangxi Common Aromatic Rice Varieties by Fluorescent SSR Marker Capillary Electrophoresis [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 506-515. |
[8] | NONG Qian, XIE Jinlan, LIN Li, MO Zhanghong, WANG Zeping, SONG Xiupeng, LI Changning. Effects of Exogenous ABA on Physiological Characteristics and Gene Expression in Sugarcane Seedlings under Drought Stress [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 553-561. |
[9] | XIAO Jian, LIANG Tian, YANG Shangdong, TAN Hongwei. Response of Endophytic Bacterial Community Compositions in Stems of Sugarcanes under Different Slow-release Fertilizer Applications [J]. Chinese Journal of Tropical Crops, 2023, 44(3): 614-627. |
[10] | WU Jiayun, ZENG Qiaoying, CHEN Yongsheng, LIU Rui, HUANG Yonghong, GAO Xiaoning. Assessment on Breeding Value of HoCP Series Sugarcane Germplasms Introduced from USA [J]. Chinese Journal of Tropical Crops, 2023, 44(2): 273-281. |
[11] | WEI Jinju, LI Haibi, ZHOU Hui, GUI Yiyun, ZHU Kai, SONG Xiupeng, ZHOU Shan, JING Yan, LI Yangrui, LIU Xihui. Quarantine and Field Resistance Disease and Agronomic Trait Observation of Introduced Foreign Sugarcane Germplasm [J]. Chinese Journal of Tropical Crops, 2023, 44(2): 365-374. |
[12] | LI Mengzhou, WANG Zhineng, LU Xin, CHEN Haowen, LI Dengyu, FAN Yuanhong. Nutritional Components and Biological Yield of Sugarcane at Different Cutting Stages and Evaluation of Feeding Value [J]. Chinese Journal of Tropical Crops, 2023, 44(1): 113-121. |
[13] | LIN Yongxu, YU Qing, FENG Meichang, LIN Jiaying, ZHAO Mingming, OU Qiuyue, GUO Jinlong, HUANG Guoqiang. Cloning and Expression Analysis of an MYB Transcription Factor Gene ScMYB52-1 from Sugarcane [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1328-1337. |
[14] | LI Rudan, MAO Jun, DAO Jingmei, FAN Xian, YANG Shaolin, DENG Jun, ZHANG Yuebin. Biological Characteristics of Main Sugarcane Cultivars in China [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1347-1356. |
[15] | WU Xuanke, MA Dongchen, HUANG Wei, LIU Yongyu, WEI Jianfeng, YAO Yuqun. Effects of Meteorological Factors on the Emergence Rate and Seedling Growth of Sugarcane [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1411-1416. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||