Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (4): 685-693.DOI: 10.3969/j.issn.1000-2561.2020.04.008
• Phytophysiology and Biochemistry • Previous Articles Next Articles
CHEN Jiaoyun1,KHAN Qaisar1,WEI Jianglu1,TANG Lihua1,DONG Dengfeng1,*(),LI Yangrui1,2,*(
)
Received:
2019-06-26
Revised:
2019-08-22
Online:
2020-04-25
Published:
2020-05-09
Contact:
DONG Dengfeng,LI Yangrui
CLC Number:
CHEN Jiaoyun,KHAN Qaisar,WEI Jianglu,TANG Lihua,DONG Dengfeng,LI Yangrui. Analysis of Physio-biochemical Characteristics of T2 α-tubulin SoTUA Transgenic Sugarcane[J]. Chinese Journal of Tropical Crops, 2020, 41(4): 685-693.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.04.008
基因名称 Gene name | 正向引物(5°-3°) Forward primer (5°-3°) | 反向引物(5°-3°) Reverse primer (5°-3°) |
---|---|---|
SoTUA | CCGTGGTGATGTTGTTCCTA | GGGTGGCTGATAGTTGATGC |
GADPH | AAGGGTGGTGCCAAGAAGG | CAAGGGGAGCAAGGCAGTT |
Tab. 1 Primer sequences for PCR amplification
基因名称 Gene name | 正向引物(5°-3°) Forward primer (5°-3°) | 反向引物(5°-3°) Reverse primer (5°-3°) |
---|---|---|
SoTUA | CCGTGGTGATGTTGTTCCTA | GGGTGGCTGATAGTTGATGC |
GADPH | AAGGGTGGTGCCAAGAAGG | CAAGGGGAGCAAGGCAGTT |
Fig. 2 PCR identification for SoTUA transgenic sugarcane M: DL2000 DNA Marker; 1: Recombinant plasmid pCAMBIA3300-SoTUA-Bar (positive control); 2: WT (negative control); 3: H2O;4-9: Transgenic sugarcane lines T1, T2, T3, T4, T5 and T6.
Fig. 4 Relative expression of SoTUA gene in sugarcane leaves under low-temperature treatment Different lowercase letters mean significant difference at 0.05 level.
Fig. 5 Changes of soluble sugar content in leaf of sugarcane under low temperature stress Different lowercase letters mean significant difference at 0.05 level.
Fig. 6 Changes of soluble protein content in leaf of sugarcane under low temperature stress Different lowercase letters mean significant difference at 0.05 level.
Fig. 7 Changes of MDA content in leaf of sugarcane under low temperature stress Different lowercase letters mean significant difference at 0.05 level.
Fig. 8 Changes of POD activity in leaf of sugarcane under low temperature stress Different lowercase letters mean significant difference at 0.05 level.
Fig. 9 Changes of SOD activity in leaf of sugarcane under low temperature stress Different lowercase letters mean significant difference at 0.05 level.
指标 Index | SOD活性 SOD activity | 可溶性蛋白含量 Soluble protein content | 可溶性糖含量 Soluble sugar content | MDA 含量 MDA content | POD活性 POD activity |
---|---|---|---|---|---|
可溶性蛋白含量 | -0.833** | ||||
可溶性糖 含量 | -0.108 | -0.286 | |||
丙二醛的 含量 | 0.285 | -0.407 | 0.137 | ||
过氧化物酶活性 | -0.367 | 0.545* | -0.480* | -0.479* | |
SoTUA基因表达量 | 0.135 | -0.383 | 0.612** | 0.437* | -0.603** |
Tab. 2 Correlation coefficients between various indicators in sugarcane leaves
指标 Index | SOD活性 SOD activity | 可溶性蛋白含量 Soluble protein content | 可溶性糖含量 Soluble sugar content | MDA 含量 MDA content | POD活性 POD activity |
---|---|---|---|---|---|
可溶性蛋白含量 | -0.833** | ||||
可溶性糖 含量 | -0.108 | -0.286 | |||
丙二醛的 含量 | 0.285 | -0.407 | 0.137 | ||
过氧化物酶活性 | -0.367 | 0.545* | -0.480* | -0.479* | |
SoTUA基因表达量 | 0.135 | -0.383 | 0.612** | 0.437* | -0.603** |
株系 Line | SOD活性 SOD activity | 可溶性蛋白含量 Soluble protein content | 可溶性糖含量 Soluble sugar content | POD活性 POD activity | MDA含量 MDA content | 综合评价值 Total score | 排名 Rank |
---|---|---|---|---|---|---|---|
WT | 21.26 | 5.36 | 4.22 | 5.66 | 4.19 | 40.70 | 7 |
T1 | 11.63 | 16.42 | 4.89 | 12.12 | 16.48 | 61.54 | 3 |
T2 | 4.61 | 13.72 | 18.79 | 9.24 | 17.05 | 63.41 | 2 |
T3 | 9.38 | 21.63 | 12.13 | 2.50 | 18.21 | 63.85 | 1 |
T4 | 21.56 | 7.61 | 2.81 | 8.70 | 14.95 | 55.63 | 6 |
T5 | 23.05 | 6.30 | 4.55 | 13.02 | 13.46 | 60.38 | 4 |
T6 | 10.12 | 20.06 | 3.92 | 7.56 | 16.62 | 58.29 | 5 |
Tab. 3 Comprehensive evaluation of cold-resistance of sugarcane lines
株系 Line | SOD活性 SOD activity | 可溶性蛋白含量 Soluble protein content | 可溶性糖含量 Soluble sugar content | POD活性 POD activity | MDA含量 MDA content | 综合评价值 Total score | 排名 Rank |
---|---|---|---|---|---|---|---|
WT | 21.26 | 5.36 | 4.22 | 5.66 | 4.19 | 40.70 | 7 |
T1 | 11.63 | 16.42 | 4.89 | 12.12 | 16.48 | 61.54 | 3 |
T2 | 4.61 | 13.72 | 18.79 | 9.24 | 17.05 | 63.41 | 2 |
T3 | 9.38 | 21.63 | 12.13 | 2.50 | 18.21 | 63.85 | 1 |
T4 | 21.56 | 7.61 | 2.81 | 8.70 | 14.95 | 55.63 | 6 |
T5 | 23.05 | 6.30 | 4.55 | 13.02 | 13.46 | 60.38 | 4 |
T6 | 10.12 | 20.06 | 3.92 | 7.56 | 16.62 | 58.29 | 5 |
[1] | 李杨瑞, 杨丽涛 . 20世纪90年代以来我国甘蔗产业和科技的新发展[J]. 西南农业学报, 2009,22(5):1469-1476. |
[2] | 李茂枝 . 浅谈甘蔗抗寒性及防寒措施[J]. 中国糖料, 1998(2):43-46. |
[3] | 钟思强, 黄树长, 刘任业 . 2008年初寒潮低温对广西甘蔗生产的影响[J]. 广西职业技术学院学报, 2009,2(5):16-20. |
[4] | 李杨瑞, 杨丽涛, 黄东亮 , 等. 甘蔗多用途育种材料创新及应用[C/OL] //2014年中国作物学会学术年会论文集. 北京: 中国作物学会, 2014: 108-109. http://navi.cnki.net/kNavi/DPaperDetail?pcode=CIPD&lwjcode=CSSC201410001&hycode=CSSC20140001. |
[5] |
Garg M, Sharma N, Sharma S , et al. Biofortified crops generated by breeding, agronomy and transgenic approaches are improving lives of millions of people around the world[J]. Frontiers in Nutrition, 2018,5:12. doi: 10.3389/fnut.2018.00012.
DOI URL PMID |
[6] |
Hammond J W, Cai D, Verhey K J . Tubulin modification and their cellular functions[J]. Current Opinion in Cell Biology, 2008,20(1):71-76.
DOI URL PMID |
[7] |
Wang L, Nick P . Cold sensing in grapevine-which signals are upstream of the microtubular “thermometer”[J]. Plant Cell and Environment, 2017,40:2844-2857.
DOI URL PMID |
[8] | Fosket D E, Morejohn L C . Structural and functional organization of tubulin[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1992,43(1):201-240. |
[9] |
Mizuno K . Induction of cold stability of microtubules in cultured tobacco cells[J]. Plant Physiology, 1992,100:740-748.
DOI URL PMID |
[10] |
Nyporko A I, Demchuk O N, Blium I B . Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance[J]. Tsitologiia I Genetika, 2003,37(6):3-11.
URL PMID |
[11] |
Schwarzerová K, Petráek J, Panigrahi K C , et al. Intranuclear accumulation of plant tubulin in response to low temperature[J]. Protoplasma, 2006,227(2-4):185-196.
DOI URL PMID |
[12] | Bokros C L, Hugdahl J D, Blumenthal S S D , et al. Proteolytic analysis of polymerized maize tubulin: regulation of microtubule stability to low temperature and Ca2+ by the carboxyl terminus of β-tubulin[J]. Plant Cell & Environment, 2010,19(5):539-548. |
[13] |
Paul A, Lal L, Ahuja P S, Kumar S . Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze][J]. Molecular Biology Reports, 2012,39(4):3485-3490.
DOI URL PMID |
[14] | 赵金莉, 赵志军, 张红 . 黄瓜根尖细胞中微管冷稳定性和微管蛋白与其抗寒性的关系[J]. 河北大学学报(自然科学版), 2006,26(2):188-192. |
[15] | 张保青 . 低温胁迫下甘蔗后期生理特性及差异蛋白质组学研究[D]. 南宁: 广西大学, 2013. |
[16] | 孙波 . 低温胁迫对甘蔗幼苗根系生长代谢的影响和相关基因 α-tubulin 的功能研究[D]. 南宁: 广西大学, 2016. |
[17] | 唐丽华, 黄婵, 陈教云 , 等. 低温胁迫对转 SoTUA 基因甘蔗生理生化特性的影响[J]. 南方农业学报, 2019,50(5):950-956. |
[18] | 邵敏 . 甘蔗宿根矮化病病原菌膜蛋白 Lxx18460 基因的特性研究[D]. 南宁: 广西大学, 2015. |
[19] | 李合生, 孙群, 赵世杰 , 等. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2000: 195-261 |
[20] | 陈建勋, 王晓峰 . 植物生理学实验指导(第二版)[M]. 广州: 华南理工大学出版社, 2006: 121-124. |
[21] | 杨丽涛, 李杨瑞, 莫家让 . 喷施“多效好”对甘蔗叶片几个生理生化特性的效应研究初报[J]. 广西农学院学报, 1990,9(1):79-83. |
[22] | 李小琴, 张凤良, 杨湉 , 等. 橡胶树野生种质资源抗寒性评价及其与生长的相关性分析[J]. 西南林业大学学报(自然科学版), 2019,39(2):44-51. |
[23] |
Moliterni V M C, Paris R, Onofri C , et al. Early transcriptional changes in Beta vulgarisin response to low temperature[J]. Planta, 2015,242(1):187-201.
DOI URL PMID |
[24] |
Abdrakhamanova A, Wang Q Y, Khokhlova L , et al. Is microtubule disassembly a trigger for cold acclimation[J]. Plant and Cell Physiology, 2003,44(7):676-686.
DOI URL PMID |
[25] | 王静 . 不同温度胁迫下西瓜细胞水平的抗性机制研究[D]. 海口: 海南大学, 2015: 40-57. |
[26] | 程仁花 . 微管解聚在拟南芥适应低温胁迫中的作用[D]. 沈阳: 沈阳农业大学, 2016. |
[27] | 杨洪, 邓治, 刘辉 , 等. 巴西橡胶树α-微管蛋白HbTUA2基因的克隆、表达及生物信息学分析[J]. 植物生理学报, 2017,53(1):55-65. |
[28] |
Wasteneys G O, Galway M E . Remodeling the cytoskeleton for growth and form: an overview with some new views[J]. Annual Review of Plant Biology, 2003,54(1):691-722.
DOI URL PMID |
[29] |
Renaut J, Hausman J F, Wisniewski M E . Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism[J]. Physiologia Plantarum, 2006,126(1):97-109.
DOI URL |
[30] |
Xiong L, Zhu J K . Molecular and genetic aspects of plant responses to osmotic stress[J]. Plant Cell & Environment, 2010,25(2):131-139.
DOI URL PMID |
[31] | 丘立杭 . 不同甘蔗品种低温胁迫下的生理生化特性及其蛋白质表达分析[D]. 南宁: 广西大学, 2010. |
[32] | 陆思思 . 低温胁迫下不同耐寒性甘蔗节间生理生化特性及蛋白表达分析[D]. 南宁: 广西大学, 2012. |
[33] | 刘光玲 . 低温胁迫对甘蔗幼苗根系生长和生理生化代谢的影响[D]. 南宁: 广西大学, 2011. |
[34] |
Sharma N, Arrigoni G, Ebinezer L B , et al. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2019,178:146-158.
DOI URL PMID |
[35] |
Munns R . Comparative physiology of salt and water stress[J]. Plant Cell and Environment, 2002,25(2):239-250.
DOI URL PMID |
[36] | 何晓童, 王盛祥, 王玉萍 . 低温弱光对红芸豆幼苗生长及生理生化特性的影响[J]. 甘肃农业大学学报, 2019,54(1):80-88. |
[37] |
Ullah H, OudhAl-Johny B, AL-Ghamdi K M S, , et al. Endophytic bacteria isolated from Solanum nigrum L., alleviate cadmium (Cd) stress response by their antioxidant potentials, including SOD synjournal by sodA gene[J]. Ecotoxicology and Environmental Safety, 2019,174:197-207.
DOI URL PMID |
[38] |
Ma C, He M, Zhong Q , et al. Uptake, translocation and phytotoxicity of antimonite in wheat (Triticum aestivum)[J]. Science of the Total Environment, 2019,669:421-430.
DOI URL PMID |
[39] | Ignatenko A, Talanova V, Repkina N , et al. Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation[J]. Acta Physiologiae Plantarum, 2019,41(6): DOI: 10.1007/s11738-019-2872-3. |
[40] | 刘零怡, 赵丹莹, 郑杨 , 等. 植物在低温胁迫下的过氧化氢代谢及信号转导[J]. 园艺学报, 2009,36(11):1701-1708. |
[41] |
Tanha Y, Fallah E, Pessarakli S . Effects of seed priming on growth and antioxidant components of hairy vetch (Vicia villosa) seedlings under chilling stress[J]. Journal of Plant Nutrition, 2019,42(5):428-443.
DOI URL |
[42] | 张建, 蒋细旺 . 利用隶属函数法对不同施肥处理下藜蒿的抗寒性综合评价[J]. 长江大学学报(自然科学版), 2016,13(15):13-16. |
[43] | 王一峰, 赵淑玲, 王瀚 . 不同核桃种质展叶期抗寒性的综合评价[J]. 经济林研究, 2019(1):50-60. |
[44] | 于庆帆, 王海琪, 白茹 . 隶属函数法对伊犁地区‘树上干’杏不同株系抗寒性的评价[J]. 分子植物育种, 2018,16(8):273-278. |
[1] | HUANG Zhenrui,ZHOU Wenling,AO Junhua,CHEN Diwen,HUANG Ying,JIANG Yong,LI Qiwei. Sugarcane Yield and Soil Potassium Balance in Potassium Application of Four Consecutive Years [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1347-1353. |
[2] | XU Xia,GOU Yonggang,LUO Shasha,WANG Yushu,YU Lingling,WANG Jianwu. Effect of Nitrogen Reduction on Yield Stability of Sugarcane-Soybean Intercropping System [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1354-1365. |
[3] | WEI Dongping,WEI Jianfeng,LIANG Zhenhua,WEI Qiaoyun,HU Guijuan. Variation among Sugarcane Varieties in Nutrient Uptake and Utilization under Mechanized Production [J]. Chinese Journal of Tropical Crops, 2020, 41(5): 845-850. |
[4] | XU Zhijun,ZHAO Sheng,HU Xiaowen,KONG Ran,SU Junbo,LIU Yang. Development, Characterization and Speciality of Microsatellite Markers in AP85-441 and R570 Genomic Reference Sequences [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 722-729. |
[5] | NONG Zemei,SHI Guoying,ZENG Quan,YE Xuelian,QIN Huadong,HU Chunjin. Analysis on Enzyme Activity and Microbial Community Diversity in Rhizosphere Soil of Different Sugarcane Varieties [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 819-828. |
[6] | JING Yan,ZHOU Hui,LIU Xihui,TAN Fang,ZHANG Xiaoqiu,ZHANG Ronghua,SONG Xiupeng,LI Yangrui,YAN Meixin,LEI Jingchao,QIN Zhenqiang,LUO Yawei,LI Dongmei,WEI Jinju. Smut Resistant Identification and Analysis of New Sugarcane Clones of Guitang [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 333-338. |
[7] | GUO Ying,LIN Zhikai,WANG Wenhua,LIU Liqing,HE Enming. Accumulation of Lxx in Infected Sugarcane Stem and Its Effect on Structure of Sugarcane Stem [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 359-364. |
[8] | YANG Liu,LIAO Fen,Muhammad ANAS,LI Qiang,PENG Lishun,HUANG Dongliang,LI Yangrui. Screening of Sugarcane with High Nitrogen Efficiency at Seedling Stage [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2205-2218. |
[9] | SHEN Linbo,WU Nannan,FENG Xiaoyan,XIONG Guoru,ZHAO Tingting,WANG Wenzhi,WANG Jungang,ZHANG Shuzhen. Virus Infection Situation of Fifty-two Sugarcane Varieties in Guangxi [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 116-126. |
[10] | YANG Kun,ZHAO Jun,QIN Wei,FAN Yuanhong,CHEN Xuekuan,WU Caiwen,ZHAO Liping,YAO Li,LIU Jiayong,ZHAO Peifang,ZAN Fenggang. Applied Research on Selection Index Method Based on the Economic Weight in Sugarcane Breeding Program Ⅰ. Establishment of Economic Weight Model for Target Traits [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 24-34. |
[11] | WEN Mingfu,PAN Fangyin,QI Yongwen,WU Jiayun,AO Junhua,YANG Junxian,GUAN Jinyan,PENG Lichong,LIANG Qiru,LUO Qingwen. Breeding of New Sugarcane (Saccharum spp.) Cultivar, Yuetang 06-233 [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 35-42. |
[12] | QUAN Yiji,FAN Xian,LI Rudan,YANG Shaolin,DENG Jun. Integrative Assessments on Physiological Response and Cold Tolerance of Different Sugarcane Varieties to Low Temperature [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 63-68. |
[13] | FAN Xian,YANG Shaolin,LI Rudan,QUAN Yiji,DENG Jun,ZHANG Yuebin. Root Morphological and Physiological Characteristics of Sugarcane Stubble Cutting Height [J]. Chinese Journal of Tropical Crops, 2019, 40(9): 1671-1676. |
[14] | QIU Lihang,FAN Yegeng,ZHOU Huiwen,CHEN Rongfa,HUANG Xing,LUO Hanmin,YANG Rongzhong,DUAN Weixing,LIU Junxian,WU Jianming. Analysis of Rational Close Planting with Agronomic Ttraits and Yield in Intense Tillering Ability Augarcane Variety [J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1075-1082. |
[15] | LIU Lufeng,CUN Haichun,HE Pengfei,DI Yining,WU Yixin,HE Lilian,LI Fusheng,HE Yueqiu. Isolation, Identification and Multiple Function Analyses of Sugarcane Endophytes [J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1144-1152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||