Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (2): 339-345.DOI: 10.3969/j.issn.1000-2561.2020.02.018
• Crop Pests, Diseases and Their Control, Environmental Protection • Previous Articles Next Articles
DUAN Yajie1,MEI Zhigang2,SUN Dequan1,LI Weiming1,PANG Zhencai1,HU Huigang1,*()
Received:
2019-04-02
Revised:
2019-07-31
Online:
2020-02-25
Published:
2020-03-21
Contact:
HU Huigang
CLC Number:
DUAN Yajie,MEI Zhigang,SUN Dequan,LI Weiming,PANG Zhencai,HU Huigang. Optimization of Fermentation Conditions of Antagonistic Actinomycetes FS-4[J]. Chinese Journal of Tropical Crops, 2020, 41(2): 339-345.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.02.018
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 0 | 1 | |
A蛋白胨/% | 0.3 | 0.4 | 0.5 |
B蔗糖/% | 1 | 2 | 3 |
C时间/h | 24 | 48 | 72 |
Tab. 1 Box-Behnken experimental for factor and level
因素Factor | 水平Level | ||
---|---|---|---|
-1 | 0 | 1 | |
A蛋白胨/% | 0.3 | 0.4 | 0.5 |
B蔗糖/% | 1 | 2 | 3 |
C时间/h | 24 | 48 | 72 |
Fig. 2 Effect of sucrose concentration on activity of antimicrobial substance produced by FS-4 Difference lowercase letters represent 5% significant level.
Fig. 4 Effect of nitrogen sources concentration on activity of antimicrobial substance produced by FS-4 Difference lowercase letters represent 5% significant level.
Fig. 5 Effect of sodium chloride, dipotassium hydrogen phosphate and magnesium sulfate concentration on activity of antimicrobial substance produced by fS-4 Difference lowercase letters represent 5% significant level.
Fig. 8 Effect of fermentation time on activity of antimicrobial substance produced by FS-4 Difference lowercase letters represent 5% significant level.
实验号 Experiment number | A | B | C | 抑菌圈直径 Inhibition zone diameter/mm |
---|---|---|---|---|
1 | 0 | 0 | 0 | 25.4 |
2 | 1 | 0 | -1 | 21.9 |
3 | 0 | 1 | -1 | 20.9 |
4 | -1 | -1 | 0 | 21.4 |
5 | 0 | 0 | 0 | 24.9 |
6 | -1 | 1 | 0 | 22.9 |
7 | -1 | 0 | 1 | 21.4 |
8 | 0 | 0 | 0 | 25.4 |
9 | 1 | -1 | 0 | 26.4 |
10 | 0 | 0 | 0 | 25.9 |
11 | 0 | 1 | 1 | 25.4 |
12 | 1 | 0 | 1 | 26.4 |
13 | 0 | -1 | 1 | 24.4 |
14 | 1 | 1 | 0 | 26.9 |
15 | 0 | -1 | -1 | 21.4 |
16 | -1 | 0 | -1 | 20.4 |
17 | 0 | 0 | 0 | 26.7 |
Tab. 2 Response surface design experimental results
实验号 Experiment number | A | B | C | 抑菌圈直径 Inhibition zone diameter/mm |
---|---|---|---|---|
1 | 0 | 0 | 0 | 25.4 |
2 | 1 | 0 | -1 | 21.9 |
3 | 0 | 1 | -1 | 20.9 |
4 | -1 | -1 | 0 | 21.4 |
5 | 0 | 0 | 0 | 24.9 |
6 | -1 | 1 | 0 | 22.9 |
7 | -1 | 0 | 1 | 21.4 |
8 | 0 | 0 | 0 | 25.4 |
9 | 1 | -1 | 0 | 26.4 |
10 | 0 | 0 | 0 | 25.9 |
11 | 0 | 1 | 1 | 25.4 |
12 | 1 | 0 | 1 | 26.4 |
13 | 0 | -1 | 1 | 24.4 |
14 | 1 | 1 | 0 | 26.9 |
15 | 0 | -1 | -1 | 21.4 |
16 | -1 | 0 | -1 | 20.4 |
17 | 0 | 0 | 0 | 26.7 |
方差来源 Sources of variation | 平方和 Quadratic sum | 自由度 Freedom | 均方 Mean square | F值 F value | P | 显著性 Conspicuousness |
---|---|---|---|---|---|---|
模型 | 82.73 | 9 | 9.19 | 18.85 | 0.0004 | ** |
A蛋白胨 | 30.03 | 1 | 30.03 | 61.57 | 0.0001 | ** |
B蔗糖 | 0.78 | 1 | 0.78 | 1.60 | 0.2462 | |
C时间 | 21.13 | 1 | 21.13 | 43.31 | 0.0003 | ** |
AB | 0.25 | 1 | 0.25 | 0.51 | 0.4972 | |
AC | 3.06 | 1 | 3.06 | 6.28 | 0.0407 | * |
BC | 0.56 | 1 | 0.56 | 1.15 | 0.3185 | |
A2 | 3.26 | 1 | 3.26 | 6.68 | 0.0362 | * |
B2 | 0.61 | 1 | 0.61 | 1.25 | 0.3011 | |
C2 | 21.41 | 1 | 21.41 | 43.89 | 0.0003 | ** |
残差 | 3.41 | 7 | 0.49 | |||
失拟项 | 1.56 | 3 | 0.52 | 1.12 | 0.4386 | |
纯误差 | 1.85 | 4 | 0.46 | |||
总和 | 86.15 | 16 |
Tab. 3 ANOVA for model analysis of variance
方差来源 Sources of variation | 平方和 Quadratic sum | 自由度 Freedom | 均方 Mean square | F值 F value | P | 显著性 Conspicuousness |
---|---|---|---|---|---|---|
模型 | 82.73 | 9 | 9.19 | 18.85 | 0.0004 | ** |
A蛋白胨 | 30.03 | 1 | 30.03 | 61.57 | 0.0001 | ** |
B蔗糖 | 0.78 | 1 | 0.78 | 1.60 | 0.2462 | |
C时间 | 21.13 | 1 | 21.13 | 43.31 | 0.0003 | ** |
AB | 0.25 | 1 | 0.25 | 0.51 | 0.4972 | |
AC | 3.06 | 1 | 3.06 | 6.28 | 0.0407 | * |
BC | 0.56 | 1 | 0.56 | 1.15 | 0.3185 | |
A2 | 3.26 | 1 | 3.26 | 6.68 | 0.0362 | * |
B2 | 0.61 | 1 | 0.61 | 1.25 | 0.3011 | |
C2 | 21.41 | 1 | 21.41 | 43.89 | 0.0003 | ** |
残差 | 3.41 | 7 | 0.49 | |||
失拟项 | 1.56 | 3 | 0.52 | 1.12 | 0.4386 | |
纯误差 | 1.85 | 4 | 0.46 | |||
总和 | 86.15 | 16 |
[1] | Shen Z, Ruan Y, Chao X , et a1. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression[J]. Biology and Fertility of Soils, 2015,51(5):553-562. |
[2] | Guo L, Yang L, Liang C , et a1. The G-protein subunits FGA2 and FGB1 play distinct roles in development and pathogenicity in the banana fungal pathogen Fusarium oxysporum f. sp cubense[J]. Physiological and Molecular Plant Pathology, 2016,93:29-38. |
[3] | 段雅婕, 陈晶晶, 周登博 , 等. 豆粕有机质发酵液中香蕉枯萎病拮抗菌的筛选与鉴定[J]. 江苏农业科学, 2015,43(12):168-171. |
[4] | 柯春亮, 陈宇丰, 周登博 , 等. 香蕉根际土壤解磷细菌的筛选、鉴定及解磷能力[J]. 微生物学通报, 2015,42(6):1032-1042. |
[5] | 袁辉林, 康丽华, 马海滨 . 响应曲面法及其在微生物发酵工艺优化中的应用[J]. 安徽农业科学, 2011,39(16):9498-9500, 9502. |
[6] | 王小琴, 龚斌, 朱薇玲 , 等. 放线菌327#的发酵培养基筛选及培养条件优化[J]. 中国酿造, 2010(10):47-50. |
[7] | 段雅婕, 庞振才, 陈晶晶 , 等. 二氧化氯对土壤中香蕉枯萎病的防治效果初探[J]. 中国南方果树, 2015,44(6):74-77, 81. |
[8] | 牛世全, 耿晖, 阎薇如 , 等. 黄芪根腐病生防放线菌筛选鉴定及其优化培养[J]. 植物保护学报, 2016,43(6):943-950. |
[9] | 田雪莲, 尹显慧, 龙友华 , 等. 猕猴桃溃疡病菌拮抗菌筛选、鉴定及发酵条件优化[J]. 食品科学, 2017,38(16):79-85. |
[10] | 冯沛仙, 张仁文, 夏占峰 , 等. 响应面法优化易变链霉菌Streptomyces mutabilis TRM45540产放线菌素D的发酵条件[J]. 中国抗生素杂志, 2016,41(6):435-440. |
[11] | 梁金钟, 王翼雪, 梅剑秋 . 植物乳杆菌富硒培养条件的优化[J]. 食品工业科技, 2017,38(3):137-142. |
[12] | Shakeel Q, Lyu A, Zhang J , et a1. Optimization of the cultural medium and conditions for production of antifungal substances by Streptomyces platensis 3-10 and evaluation of its efficacy in suppression of clubroot disease (Plasmodiophora brassicae) of oilseed rape[J]. Biological Control, 2016,101:59-68. |
[13] | Zhao Z Y, Ma S S, Li A , et a1. Effects of trophic modes, carbon sources, and salinity on the cell growth and lipid accumulation of tropic ocean oilgae strain Desmodesmus sp. WC08[J]. Applied Biochemistry and Biotechnology, 2016,180(3):452-463. |
[14] | Bi F, Ment D. Luria N , et a1. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletorichum gloeosporioides[J]. Fungal Genetics and Biology, 2017,99:29-39. |
[15] | 石怀兴 . 枯草芽孢杆菌G8发酵条件的优化、抗菌物质的部分特性分析及分离纯化[D]. 济南: 山东农业大学, 2009. |
[16] | 陈美花, 程雪冰, 黄海 , 等. 乳清分离蛋白对鲜榨黄冠梨汁澄清效果的研究[J]. 食品工业科技, 2017,38(3):186-191. |
[17] | 马新辉, 李镕廷, 赵晓涵 , 等. 双水相体系萃取蓝莓多糖的分配平衡研究[J]. 食品工业科技, 2017,38(3):211-214, 220. |
[18] | 张莉力, 许云贺, 肖海蒂 , 等. 地衣芽孢杆菌BL-5产孢发酵条件优化[J]. 食品工业科技, 2017,38(3):150-155. |
[19] | Shen Z, Ruan Y, Chao X , et a1. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression[J]. Biology and Fertility of Soils, 2015,51(5):553-562. |
[20] | Karangwa P, Blomme G, Beed F , et a1. The distribution and incidence of banana Fusarium wilt in subsistence farming systems in east and central Africa[J]. Crop Protection, 2016,84:132-140. |
[21] | Sharma P, Kalita M C, Thakur D . Broad spectrum antimicrobial activity of forest-derived soil Actinomycete, Nocardia sp PB-52[J]. Front Microbiology, 2016,7:347. |
[22] | Gurovic MSV, Olivera NL . Antibacterial producing actinomycetes from Extra Andean Patagonia[J]. Journal of Arid Environments, 2017,144:216-219. |
[23] | 王彦, 牛世全, 郑豆豆 , 等. 黄瓜枯萎病拮抗放线菌的筛选、鉴定及发酵条件优化[J]. 微生物学通报, 2019,46(5):1062-1073. |
[24] | 程沁园, 叶亮, 邢莹莹 , 等. 海洋放线菌WB-F5 发酵条件的优化及抑菌活性产物性质的初步研究[J]. 中国天然药物, 2007,5(2):142-145. |
[25] | 朱宏建, 欧阳小燕, 周倩 , 等. 一株辣椒尖孢炭疽病菌拮抗菌株的分离鉴定与发酵条件优化[J]. 植物病理学报, 2012,42(4):418-424. |
[26] | 袁辉林, 康丽华, 马海滨 . 响应曲面法及其在微生物发酵工艺优化中的应用[J]. 安徽农业科学, 2011,39(16):9498-9500, 9502. |
[27] | 莫坤联 . 抗香蕉枯萎病菌链霉菌菌剂制备及其防效测定[D]. 海口: 海南大学, 2012. |
[1] | HUANG Qiong,HUANG Xiaomei. Ultrasound-microwave Assisted Extraction and Antioxidant Activity of Total Flavonoids from Hibiscus sabdariffa L. [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1242-1250. |
[2] | FANG Yiming,CHU Zhong,GU Fenglin,HE Shuzhen,LAI Jianxiong. Optimization of Extraction of Procyanidin from Cocoa Bean of Hainan Using Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 779-786. |
[3] | JU Xueli,TAN Haisheng,YANG Jinsong,GUO Haiyang,SHI Yike,WU Yunxue. Optimization of Fermentation Technology for Yellow Wine from Acerola Cherry and Rice by Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 987-994. |
[4] | ZHANG Hui,LIN Chenqiang,WU Dahua,CHEN Jichen,CAI Haisong. Optimization of Liquid Fermentation Conditions of Bacillus subtilis CS27 [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 995-1001. |
[5] | LIANG Jie, LIU Tao, ZHANG Chaoxia, CAI Lifeng. Preparation and Optimization of Loquat Seeds Based on Microporous Carbon via Response Surface Method and Study on Its Selective [J]. Chinese Journal of Tropical Crops, 2018, 39(8): 1651-1658. |
[6] | CHU Zhong, GUO Ying, ZHANG Yanjun, HE Shuzhen, QIAN Lei. Extraction Optimization and Analysis of Volatile Components of Instant Mallotus oblongifolius [J]. Chinese Journal of Tropical Crops, 2018, 39(3): 588-594. |
[7] | ZHAN Junling, HUANGFU Yangxin, GAO Ziyi, ZHAO Erlao. Ultrasonic-Microwave Assisted Extraction of Total Flavonoids from Houttuyniae Herba and Its Antioxidant Activity [J]. Chinese Journal of Tropical Crops, 2018, 39(10): 2067-2073. |
[8] | ZHANG Yanjun ZHU Hongmei TIAN Jianwen XU Fei CHU Zhong. Formulation and Preparation Technique of Vanilla Oil Microcapsuled by Jackfruit Seed Starch [J]. Chinese Journal of Tropical Crops, 2017, 38(6): 1127-1133. |
[9] | XUE Yaru , CAO Ran , LU Xu , ZHANG Yi. Response Surface Model Optimization of Oligosaccharide Extraction from Coix Seed by Ultrasonic-assisted Technology#br# [J]. Chinese Journal of Tropical Crops, 2017, 38(3): 565-571. |
[10] | ZANG Tao XIANG Dong. Optimization of Water Extraction of Total Polyphenols from Nymphaea stellata Willd by Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2017, 38(12): 2366-2375. |
[11] | DAI Yanli SHEN Weizhi LIAO Sentai LIU Fan WANG Siyuan HU Genteng ZOU Yuxiao. Optimization of Ultrasonic-assisted Extraction Process of Mulberry Polyphenols Using Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1588-1594. |
[12] | ZHANG Yan WU Jijun LIU Xueming WANG Siyuan FU Manqin. Optimization of Extraction Process for Pectin from the Pericarp of Pomelo by Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1595-1600. |
[13] | ZHANG Ronghu XIA Yijie DOU Zhihao HE Ai XIE Hui DENG Hao FENG Jiancheng. Optimization of Extracting Technology and Antioxidant Activity in vitro of Polyphenol from Pericarp of Baccaurea [J]. Chinese Journal of Tropical Crops, 2016, 37(5): 1009-1016. |
[14] | YANG Huiqiang BAI Xinpeng Lü Xiaoya, LI Ruonan ZHANG Yuxiang CAI Jinhong. Preparation of Fat Substitute Using Enzymatic Denatured Jackfruit Seed Starch [J]. Chinese Journal of Tropical Crops, 2016, 37(4): 809-816. |
[15] | MENG Qixuan WU Yougen CUI Mengyuan YUAN Langxing ZHANG Junfeng. Optimization of Ultrasonic-Assisted Extraction of Polyphenol from NONI Using Response Surface Methodology [J]. Chinese Journal of Tropical Crops, 2015, 36(9): 1672-1679. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||