Chinese Journal of Tropical Crops ›› 2020, Vol. 41 ›› Issue (1): 7-14.DOI: 10.3969/j.issn.1000-2561.2020.01.002
• Crop Culture and Nutrition, Genetic Breeding • Previous Articles Next Articles
WANG Yan1,XING Dan1,*(),SONG Lala1,HAN Shiyu1,CHEN Tingsu2
Received:
2019-05-23
Revised:
2019-06-17
Online:
2020-01-25
Published:
2020-01-21
Contact:
XING Dan
CLC Number:
WANG Yan,XING Dan,SONG Lala,HAN Shiyu,CHEN Tingsu. Effects of Arbuscular Mycorrhizal Fungi on Nutrient Exchange in Mulberry Plant in Rocky Desertification Areas[J]. Chinese Journal of Tropical Crops, 2020, 41(1): 7-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2020.01.002
时期 Period | 接种 Inoculation | 株高 Plant height /cm | 茎粗 Stem diameter /mm | 叶面积 Leaf area /cm2 | 叶片数 Fresh leaf number | 干重Dry weight/g | 侵染率 Infestation rate/% | ||
---|---|---|---|---|---|---|---|---|---|
叶Leaf | 茎Stalk | 根Root | |||||||
供水时期 | -M | 17.63c | 2.33b | 50.52c | 9.33c | 1.42b | 0.64b | 0.18b | 0.00 |
Fm | 20.83b | 2.60b | 63.79b | 10.67b | 1.61a | 0.89a | 0.25a | 60.54b | |
Ri | 24.60a | 3.23a | 82.58a | 13.33a | 1.37b | 0.88a | 0.25a | 79.66a | |
干旱时期 | -M | 19.50B | 2.59B | 53.97C | 6.00B | 0.87B | 1.04C | 0.39C | 0.00 |
Fm | 25.90A | 2.61B | 66.77B | 8.67A | 0.80C | 1.16B | 0.48B | 64.02B | |
Ri | 26.55A | 3.24A | 86.76A | 9.33A | 1.26A | 1.49A | 0.58A | 68.27A |
Tab. 1 Growth and infestation rate of mulberry seedlings under different treatments
时期 Period | 接种 Inoculation | 株高 Plant height /cm | 茎粗 Stem diameter /mm | 叶面积 Leaf area /cm2 | 叶片数 Fresh leaf number | 干重Dry weight/g | 侵染率 Infestation rate/% | ||
---|---|---|---|---|---|---|---|---|---|
叶Leaf | 茎Stalk | 根Root | |||||||
供水时期 | -M | 17.63c | 2.33b | 50.52c | 9.33c | 1.42b | 0.64b | 0.18b | 0.00 |
Fm | 20.83b | 2.60b | 63.79b | 10.67b | 1.61a | 0.89a | 0.25a | 60.54b | |
Ri | 24.60a | 3.23a | 82.58a | 13.33a | 1.37b | 0.88a | 0.25a | 79.66a | |
干旱时期 | -M | 19.50B | 2.59B | 53.97C | 6.00B | 0.87B | 1.04C | 0.39C | 0.00 |
Fm | 25.90A | 2.61B | 66.77B | 8.67A | 0.80C | 1.16B | 0.48B | 64.02B | |
Ri | 26.55A | 3.24A | 86.76A | 9.33A | 1.26A | 1.49A | 0.58A | 68.27A |
时期 Period | 接种 Inoculation | 碳C | 氮N | 磷P | 钾K | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
叶 Leaf | 茎 Stalk | 根 Root | 叶 Leaf | 茎 Stalk | 根 Root | 叶 Leaf | 茎 Stalk | 根 Root | 叶 Leaf | 茎 Stalk | 根 Root | ||
供水时期 | -M | 421.27b | 419.50a | 403.80a | 33.10b | 17.13b | 17.87c | 1.37c | 0.85c | 1.12c | 54.24c | 34.18c | 37.88a |
Fm | 422.10b | 417.37b | 396.93b | 45.83a | 22.57a | 25.17b | 4.00b | 2.91b | 2.63a | 56.53b | 39.00a | 32.23c | |
Ri | 426.30a | 420.33a | 366.23c | 45.60a | 23.03a | 26.37a | 5.36a | 3.43a | 2.15b | 60.06a | 37.96b | 37.09b | |
干旱时期 | -M | 412.27A | 418.00A | 416.53A | 37.27B | 20.30C | 19.10C | 1.77C | 1.07C | 1.04B | 58.27A | 26.37C | 24.68C |
Fm | 391.10C | 407.97B | 393.33C | 42.13A | 25.30A | 24.40A | 4.29A | 3.23A | 3.93A | 50.37C | 30.46A | 34.55B | |
Ri | 402.63B | 404.10C | 400.97B | 35.30C | 22.37B | 21.53B | 2.90B | 2.22B | 0.96B | 50.99B | 26.45B | 50.43A |
Tab. 2 Contents of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) in mulberry under different treatments g•kg-1
时期 Period | 接种 Inoculation | 碳C | 氮N | 磷P | 钾K | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
叶 Leaf | 茎 Stalk | 根 Root | 叶 Leaf | 茎 Stalk | 根 Root | 叶 Leaf | 茎 Stalk | 根 Root | 叶 Leaf | 茎 Stalk | 根 Root | ||
供水时期 | -M | 421.27b | 419.50a | 403.80a | 33.10b | 17.13b | 17.87c | 1.37c | 0.85c | 1.12c | 54.24c | 34.18c | 37.88a |
Fm | 422.10b | 417.37b | 396.93b | 45.83a | 22.57a | 25.17b | 4.00b | 2.91b | 2.63a | 56.53b | 39.00a | 32.23c | |
Ri | 426.30a | 420.33a | 366.23c | 45.60a | 23.03a | 26.37a | 5.36a | 3.43a | 2.15b | 60.06a | 37.96b | 37.09b | |
干旱时期 | -M | 412.27A | 418.00A | 416.53A | 37.27B | 20.30C | 19.10C | 1.77C | 1.07C | 1.04B | 58.27A | 26.37C | 24.68C |
Fm | 391.10C | 407.97B | 393.33C | 42.13A | 25.30A | 24.40A | 4.29A | 3.23A | 3.93A | 50.37C | 30.46A | 34.55B | |
Ri | 402.63B | 404.10C | 400.97B | 35.30C | 22.37B | 21.53B | 2.90B | 2.22B | 0.96B | 50.99B | 26.45B | 50.43A |
Fig. 2 Stoichiometric ratio of C, N, P and K in mulberry trees under different treatments Columns followed by different lowercase letters indicate significant difference between different strains (P<0.05).
时期 Period | 接种 AMF used | 碳含量 SOC/(g∙kg-1) | 总氮量 TN/(g∙kg-1) | 总磷量 TP/(g∙kg-1) | 总钾量 TK/(g∙kg-1) | 有效氮量 AN/(mg∙kg-1) | 有效磷量 AP/(mg∙kg-1) | 有效钾量 AK/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
供水时期 | -M | 14.73a | 0.17a | 0.61a | 23.12a | 126.17a | 14.83a | 169.73a |
Fm | 13.70b | 0.17a | 0.44b | 19.74b | 117.83ab | 10.77b | 136.97c | |
Ri | 13.47b | 0.16b | 0.29c | 19.95ab | 114.50b | 10.07b | 161.83b | |
干旱时期 | -M | 15.63A | 0.14C | 0.59A | 19.93B | 106.77C | 7.83C | 109.37C |
Fm | 14.67B | 0.16B | 0.54B | 22.10A | 119.13B | 15.73A | 124.07B | |
Ri | 15.53A | 0.18A | 0.60B | 21.17AB | 128.40A | 14.33B | 136.67A |
Tab. 3 Contents of soil carbon (C), nitrogen (N), phosphorus (P) and potassium (K) under different treatments
时期 Period | 接种 AMF used | 碳含量 SOC/(g∙kg-1) | 总氮量 TN/(g∙kg-1) | 总磷量 TP/(g∙kg-1) | 总钾量 TK/(g∙kg-1) | 有效氮量 AN/(mg∙kg-1) | 有效磷量 AP/(mg∙kg-1) | 有效钾量 AK/(mg∙kg-1) |
---|---|---|---|---|---|---|---|---|
供水时期 | -M | 14.73a | 0.17a | 0.61a | 23.12a | 126.17a | 14.83a | 169.73a |
Fm | 13.70b | 0.17a | 0.44b | 19.74b | 117.83ab | 10.77b | 136.97c | |
Ri | 13.47b | 0.16b | 0.29c | 19.95ab | 114.50b | 10.07b | 161.83b | |
干旱时期 | -M | 15.63A | 0.14C | 0.59A | 19.93B | 106.77C | 7.83C | 109.37C |
Fm | 14.67B | 0.16B | 0.54B | 22.10A | 119.13B | 15.73A | 124.07B | |
Ri | 15.53A | 0.18A | 0.60B | 21.17AB | 128.40A | 14.33B | 136.67A |
Fig. 3 Changes of stoichiometric ratio of C, N, P and K in soils under different treatments Columns followed by different lowercase letters indicate significant difference between different strains (P<0.05).
[1] | Wang S J, Liu Q M, Zhang D F . Karst rocky desertification in southwestern china: geomorphology, landuse, impact and rehabilitation[J]. Land Degradation and Development, 2004,15(2):115-121. |
[2] | 袁道先 . 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学, 2008,25(9):19-25. |
[3] | Elser J J, Fagan W F, Kerkhoff A J , et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010,186(3):593-608. |
[4] | Wang B, Qiu Y L . Phylogenetic distribution and evolution of mycorrhizas in land plants[J]. Mycorrhiza, 2006,16(5):299-363. |
[5] | Smith S E, Smith F A, Jakobsen I . Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004,162(2):511-524. |
[6] | Schnepf A, Jones D, Roose T . Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: Temporal and spatial scales for an experimental design[J]. Bulletin of Mathematical Biology, 2011,73(9):2175-2200. |
[7] | Tanaka Y, Yano K . Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied plant[J]. Cell and Environment, 2005,28(10):1247-1254. |
[8] | Bago B, Vierheilig H, Pich Y , et al. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture[J]. New Phytologist, 1996,133(2):273-280. |
[9] | He X H, Bledsoe C S, Zasoski R J , et al. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland[J]. New Phytologist, 2006,170(1):143-151. |
[10] | 陈永亮, 陈保冬, 刘蕾 , 等. 丛枝菌根真菌在土壤氮素循环中的作用[J]. 生态学报, 2014,34(17):4807-4815. |
[11] | Selosse M A, Richard F, He X H , et al. Mycorrhizal networks: des liaisons dangereuses[J]. Trends in Ecology & Evolution, 2006,21(11):621-628. |
[12] | Fellbaum C R, Mensah J A, Cloos A J , et al. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants[J]. New Phytologist, 2014,203(2):646-656. |
[13] | Rillig M C, Mummey D L . Mycorrhizas and soil structure[J]. New Phytologist, 2006,171(1):41-53. |
[14] | Bi Y L, Wu F Y . Effects of mycorhiza on ecological restoration of solid wastes from coal mine and their nutritional dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006,22(5):147-152. |
[15] | Augé R M . Water relations, drought and vesicular-arbuscular mycohrrizal simbiosis[J]. Mycorrhiza, 2001,11(1):3-42. |
[16] | Bissett A, Brown M V, Siciliano S D , et al. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach[J]. Ecology Letters, 2013,16(S1):128-139. |
[17] | Johnson N C, Angelard C, Sanders I R , et al. Predicting community and ecosystem outcomes of mycorrhizal responses to global change[J]. Ecology Letters, 2013,16(S1):140-153. |
[18] | Tian H, Chen G, Zhang C , et al. Pattern and variation of C:N:P ratios in China’s soils: a synjournal of observational data[J]. Biogeochemistry, 2010,98(1-3):139-151. |
[19] | Watt M S, Palmer D J . Use of regression kriging to develop a carbon: nitrogen ratio surface for New Zealand[J]. Geoderma, 2012,183:49-57. |
[20] | Elser J J, Acharya K, Kyle M , et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003,6(10):936-943. |
[21] | Phillips J M, Hayman D S . Improved procedures for clearing roots and staining parasitic and vesicular-arbuscula rmycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970,55:158-163. |
[22] | Giovannetti M, Mosse B . An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologist, 1980,84(3):489-500. |
[23] | 鲁如坤 . 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 312-314. |
[24] | Shi S M, Chen K, Gao Y , et al. Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings[J]. Frontiers in Microbiology, 2016,7:1030. |
[25] | 唐许, 刘代军, 涂波 , 等. 菌根桑的促生效应及耐旱生理生化机制分析[J]. 西南大学学报(自然科学版), 2013,35(8):19-26. |
[26] | Bradshaw C, Kautsky U, Kumblad L . Ecological stoichiometry and multi-element transfer in a coastal ecosystem[J]. Ecosystems, 2012,15(4):591-603. |
[27] | Camenzind T, Rillig M C . Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil[J]. Soil Biology and Biochemistry, 2013,64(9):96-102. |
[28] | Smith S E, Read D J . Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008,3(3):273-281. |
[29] | 钟思远, 张静, 褚国伟 , 等. 沿海侵蚀台地不同恢复阶段土壤团聚体组成及其与丛枝菌根真菌的关系[J]. 生态环境学报, 2017,26(2):219-226. |
[30] | Nuccio E E, Hodge A, Pett-Ridge J , et al. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition[J]. Environmental Microbiology, 2013,15(6):1870-1881. |
[31] | 李晓林, 冯固 . 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001. |
[32] | Camenzind T, Rillig M C . Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil[J]. Soil Biology and Biochemistry, 2013,64:96-102. |
[33] | Verbruggen E, Veresoglou S D, Anderson I C , et al. Arbuscular mycorrhizal fungi-short-term liability but long-term benefits for soil carbon storage[J]. New Phytologist, 2013,197(2):366-368. |
[34] | 戚德辉, 温仲明, 王红霞 , 等. 黄土丘陵区不同功能群植物碳氮磷生态化学计量特征及其对微地形的响应[J]. 生态学报, 2016,36(20):6420-6430. |
[35] | 赵维奇, 廉宁霞, 张弛 , 等. 丛枝菌根真菌(AMF)处理后红花土壤深度生态化学计量的时空变化[J]. 江苏农业科学, 2015,43(11):468-471. |
[36] | Tessier J T, Raynal D J . Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003,40(3):523-534. |
[37] | Merrild M P, Ambus P, Rosendahl S , et al. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants[J]. New Phytologist, 2013,200(1):229-240. |
[38] | 张秋芳, 陈奶寿, 陈坦 , 等. 不同恢复年限侵蚀红壤生态化学计量特征[J]. 中国水土保持科学, 2016,14(2):59-66. |
[39] | Smith F A, Smith S E . What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants[J]. Plant and Soil, 2011,348(1-2):63-79. |
[40] | Camenzind T, Rillig M C . Extraradical arbuscular mycorrhizal fungal hyphae in an organic tropical montane forest soil[J]. Soil Biology and Biochemistry, 2013,64:96-102. |
[1] | YANG Wenwu,GUO Dongqin,CAO Weiguo,PAN Xingjiao,XUE Yanbing,ZHANG Jie,ZHOU Nong. Effects of 27 Strains of Arbuscular Mycorrhizal Fungi Inoculation on Physiology and Biochemistry and Major Components of Terpenoids in Potted Saussurea costus [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1822-1830. |
[2] | SUN Chenyu,ZENG Yanhong,MA Junqing,LIU Lu,WANG Wenqi,HUANG Jinghua. Effects of Arbuscular Mycorrhizal Fungi on Artemisia annua L. Growth and Chemical Composition of Root Exudates [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1831-1837. |
[3] | ZHANG Jinlian,LIU Jinhua,BAO Han,LI Dongping,SONG Juan,HUANG Jinghua,CHEN Tingsu. A Study to Develop an in Vitro Dual Culture System with Carrot Hairy Roots and Arbuscular Mycorrhizal Fungi [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1535-1542. |
[4] | HUANG Xuguang,QIN Ling,HUANG Lidan,LU Yansong,LUO Enbo,HUANG Lingpu,LIU Yuefei. Variation Characteristics of Drought and Rehydration on the Growth of Hibiscus rosa-sinensis Linn. and Soil Microbial Diversity in Rhizosphere [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 401-408. |
[5] | SUN Heng,ZHANG Yanping,WANG Youqiong,WU Jiangchong,PENG Xingmin,ZHENG Yixing. Ecophysiological Responses of Azadirachta indica Seedlings to Different Water and Light Conditions [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2245-2252. |
[6] | QUAN Dawan,LI Dong,ZHANG Jinlian,SONG Juan,HU Liu,CHENG Tong,HUANG Jinghua,CHEN Tingsu. Effects of Inhibition Citrus Huanglongbing on Catharanthus roseus with Different Arbuscular Mycorrhizal Fungi Species [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2259-2266. |
[7] | SHEN Xianyue,GU Shujie,XIE Linyan,QIAN Zhenfeng,ZENG Dan,HE Lilian,LI Fusheng. Cloning and Expression Analysis of EfGRAS Gene of Relative Sugarcane Wild Species Erianthus fluvus [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2113-2119. |
[8] | WANG Qian,BAO Han,ZHANG Jinlian,SONG Juan,LIU Zengliang,HUANG Jinghua,CHEN Tingsu. Effects of Different Arbuscular Mycorrhizal Fungi Species on the Growth of Ginger [J]. Chinese Journal of Tropical Crops, 2019, 40(7): 1272-1277. |
[9] | ZHANG Lili,ZHAO Hui,GUO Jingyuan,XIA Qiyu,HE Pingping,HUO Shanshan,QU Jing,FU Dongmei,GUO Anping. Internal Reference Gene Actin of Setaria viridis and Its Application in Response to Different Drought and Salt Stress [J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2418-2425. |
[10] | WANG Qian, FENG Chongyang, ZHANG Jinlian, SONG Juan, YUAN Zhaonian, HUANG Jinghua, CHEN Tingsu. Seasonal Variation of AM Fungal Community in Rhizosphere of Sugarcane [J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1689-1694. |
[11] | CHEN Yunlei, LUO Jing, CAI Kailang, CHEN Weiyu, MAI Zhitong, HONG Wenjun. Effects of Inoculation with Arbuscular Mycorrhizal Fungi on the Absorption of Nutrients of Aquilaria sinensis and Dalbergia [J]. Chinese Journal of Tropical Crops, 2018, 39(7): 1290-1296. |
[12] | Do Thanh Trung, LI Jian, ZHANG Fengjuan, XING Yongxiu, YANG Litao, LI Yangrui, Nguyen Thi Hanh. Changes of Antioxidant Enzyme Activities and Contents of Osmotic Regulation Substances in Leaves of Different Sugarcane Varieties under #br# Drought Stress#br# [J]. Chinese Journal of Tropical Crops, 2018, 39(5): 858-866. |
[13] | CHEN Yunlei, LUO Jing, CAI Kailang, CHEN Weiyu, MAI Zhitong, HONG Wenjun. Effects of Inoculation with Arbuscular Mycorrhizal Fungi on the Absorption of Nutrients of Aquilaria sinensis and Dalbergia odorifera [J]. Chinese Journal of Tropical Crops, 2018, 39(12): 2355-2362. |
[14] | QIN Xiaojuan , LIAO Nan , ZHANG Jinlian , LI Dongping LI Song YUAN Zhaonian , CHEN Tingsu. Arbuscular Mycorrhizal Fungal Diversity and 18S rDNA Gene Sequence Analysis and Identification in Rhizosphere of Sugarcane in Red [J]. Chinese Journal of Tropical Crops, 2018, 39(11): 2241-2249. |
[15] | ZHAO Yang ZHAO Manli JIAO Run’an JIAO Jian LIU Wenlan LI Chaozhou. The Physiological Response and Comprehensive Evaluation of Drought Hardiness Under Drought Stress of Longnan Olive Main Varieties [J]. Chinese Journal of Tropical Crops, 2017, 38(9): 1620-1627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||