Chinese Journal of Tropical Crops ›› 2019, Vol. 40 ›› Issue (12): 2397-2404.DOI: 10.3969/j.issn.1000-2561.2019.12.012
• Biotechnology and Tissue Culture • Previous Articles Next Articles
ZHANG Yanmei,WANG Ruifang,YANG Ziping,LI Junfeng,LU Zhiwei,ZHAO Yanlong,LU Junying,ZHOU Wenzhao()
Received:
2019-02-18
Revised:
2019-03-21
Online:
2019-12-25
Published:
2019-12-20
Contact:
ZHOU Wenzhao
CLC Number:
ZHANG Yanmei,WANG Ruifang,YANG Ziping,LI Junfeng,LU Zhiwei,ZHAO Yanlong,LU Junying,ZHOU Wenzhao. Cloning and Expression Analysis of Polygalacturonase-inhibiting Protein in Sisal[J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2397-2404.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2019.12.012
类别 Type | 基因 Gene | 引物序列(5°-3°) Primer sequence (5°-3°) |
---|---|---|
克隆引物 | AhPGIP1 | F:ATGGAGAGAATGAC TCCCCCAGT R:TGGAAGATCGAGGAACACAGACCG |
AhPGIP2 | F:ATGTTCACTCTCCTCTGTTTTC R:TCAAACCGATCGGCCGTAATCCT | |
定量引物 | AhPGIP1 | F:TCTCTGGACATCAGCCACAA R:GGTCTCAGCACCGAACTCTC |
AhPGIP2 | F:GTCAAGGCTTGTGCTGTTGA R:GCGGTCCTCCACATAAACAC | |
GAPDH | F:GACACCGGTAGACTCCACAA R:AAGACCCTTCTCTTTGGCGA |
Tab. 1 Primer sequences used for gene clone and qRT-PCR
类别 Type | 基因 Gene | 引物序列(5°-3°) Primer sequence (5°-3°) |
---|---|---|
克隆引物 | AhPGIP1 | F:ATGGAGAGAATGAC TCCCCCAGT R:TGGAAGATCGAGGAACACAGACCG |
AhPGIP2 | F:ATGTTCACTCTCCTCTGTTTTC R:TCAAACCGATCGGCCGTAATCCT | |
定量引物 | AhPGIP1 | F:TCTCTGGACATCAGCCACAA R:GGTCTCAGCACCGAACTCTC |
AhPGIP2 | F:GTCAAGGCTTGTGCTGTTGA R:GCGGTCCTCCACATAAACAC | |
GAPDH | F:GACACCGGTAGACTCCACAA R:AAGACCCTTCTCTTTGGCGA |
Fig. 2 Amino acid sequences of AhPGIP1 and AhPGIP2 proteins The signal peptide sequences are underlined, the conserved cysteine residues are bolded, N-glycosylation sites are italic bolded, and the LRR motifs are highlighted in bold and box.
Fig. 4 Alignment of AhPGIP amino acid sequences with other known PGIPs Ten conserved LRR sequences are highlighted in boxes. AoPGIP1: Asparagus officinalis, XP_020250460; PdPGIP: Phoenix dactylifera, XP_008795755.1; CsPGIP: Citrus sinensis, XP_006485019; NnPGIP: Nelumbo nucifera, XP_010257389.1; CcPGIP: Citrus clementina, XP_006437051.1; ZmPGIP: Zea mays, NP_001147231.2; CiPGIP: Citrus iyo, BAA31843.1; ChPGIP: Capsicum chinense, Phu27708.1;SbPGIP: Sorghum bicolor, XP_002439098.1; CtPGIP: Citrus trifoliata, BAA34813.1; AoPGIP2: Asparagus officinalis, XP_020250461.1; NtPGIP: Nicotiana tabacum, NP_001312608.1; EgPGIP: Erythranthe guttata, XP_012857227.1; AhPGIP1: Agave hybrid No.11648,Unigene0026190;AhPGIP2: Agave hybrid No.11648, Unigene0013878.
Fig. 6 The relative expression level of AhPGIP1 and AhPGIP2 under six stress conditions A: Inoculation of P. nicotianae Breda; B: cold stress; C: NaCl stress; D: wounding stress; E: MeJA stress; F: SA stress. A-F indicate different stresses, a-e indicate significant differences at 0.05 level
[1] |
Kajava A V, Vassart G, Wodak S J . Modeling of the three-dimensional structure of proteins with typical leucine-rich repeats[J]. Structure, 1995,3(9):867-877.
DOI URL PMID |
[2] |
Di Matteo A, Bonivento D, Tsernoglou D , et al. Polygalacturonase-inhibiting protein (PGIP) in plant defence: a structural view[J]. Phytochemistry, 2006,67(6):528-533.
DOI URL PMID |
[3] |
Di Matteo A, Federici L, Mattei B , et al. The crystal structure of polygalacturonase-inhibiting protein (PGIP), a leucine- rich repeat protein involved in plant defense[J]. Proceedings of the National Academy of Sciences of the United States of America , 2003,100(17):10124-10128.
DOI URL PMID |
[4] |
Zhangrong W, Lili W, Qiang X , et al. Overexpression of OsPGIP2 confers Sclerotinia sclerotiorum resistance in Brassica napus through increased activation of defense mechanisms[J]. Journal Experimental Botany, 2018,69(12):3141-3155.
DOI URL PMID |
[5] |
Vasconcellos R C C, Lima T F C, Fernandes-Brum C N , et al . Expression and validation of PvPGIP genes for resistance to white mold (Sclerotinia sclerotiorum) in common beans (Phaseolus vulgaris L.)[J]. Genetics and Molecular Research, 2016,15(3):15038269.
DOI URL PMID |
[6] |
Borras-Hidalgo O, Caprari C, Hernandez-Estevez I , et al. A gene for plant protection: expression of a bean polygalac- turonase inhibitor in tobacco confers a strong resistance against Rhizocto-niasolani and two oomycetes[J]. Frontiers in Plant Science, 2012,3:268.
DOI URL PMID |
[7] |
Schacht T, Unger C, Pich A , et al. Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts[J]. Plant Physiology and Biochemistry, 2011,49(4):377-387.
DOI URL |
[8] |
Kaewwongwal A, Chen J, Somta P , et al. Novel alleles of two tightly linked genes encoding polygalacturonase- inhibiting proteins (VrPGIP1 and VrPGIP2) associated with the Br locus that confer bruchid (Callosobruchus spp.) resistance to mungbean (Vigna radiata) accession V2709[J]. Frontiers in Plant Science, 2017,8:1692.
DOI URL PMID |
[9] |
Liu N, Ma X, Zhou S , et al. Molecular and functional characterization of a polygalacturonase-inhibiting protein from Cynanchum komarovii that confers fungal resistance in Arabidopsis[J]. PLoS One, 2016,11(1):e0146959.
DOI URL PMID |
[10] |
Liu N, Sun Y, Wang P , et al. Mutation of key amino acids in the polygalacturonase-inhibiting proteins CkPGIP1 and GhPGIP1 improves resistance to Verticillium wilt in cotton[J]. The Plant Journal, 2018,96(3):546-561.
DOI URL PMID |
[11] |
Liu N, Zhang X, Sun Y , et al. Molecular evidence for the involvement of a polygalacturonase-inhibiting protein, GhPGIP1, in enhanced resistance to Verticillium and Fusarium wilts in cotton[J]. Scientific Reports, 2017,7:39840.
DOI URL PMID |
[12] |
Janni M, Sella L, Favaron F , et al. The expression of a Bean PGIP in transgenic wheat confers increased resistance to the fungal pathogen Bipolaris sorokiniana[J]. Molecular Plant- Microbe Interactions, 2008,21(2):171-177.
DOI URL PMID |
[13] |
Wang R, Lu L, Pan X . et al. Functional analysis of OsPGIP1 in rice sheath blight resistance[J]. Plant Molecular Biology, 2015,87(1-2):181-191.
DOI URL PMID |
[14] |
Matsaunyane L B T, Oelofse D, Dubery L A . In silico analysis of the polygalacturonase inhibiting protein 1 from apple, Malus domestica[J]. BMC Research Notes, 2015,8(1):76.
DOI URL PMID |
[15] |
Sarrocco S, Matarese F, Baroncelli R, Vannacci G , et al. The constitutive endopolygalacturonase TvPG2 regulates the induction of plant systemic resistance by Trichoderma virens[J]. Phytopathology, 2017,107(5):537-544.
DOI URL PMID |
[16] |
Zhang C, Feng C, Wang J . et al. Cloning, expression analysis and recombinant expression of a gene encoding a polygalacturonase-inhibiting protein from tobacco, Nicotiana tabacum[J]. Heliyon, 2016,2(5):e00110.
DOI URL PMID |
[17] |
Saavedra G M, Sanfuentes E, Figueroa P M , et al. Independent preharvest applications of methyl jasmonate and chitosan elicit differential upregulation of defense-related genes with reduced incidence of gray mold decay during postharvest storage of fragaria chiloensis fruit[J]. International Journal of Molecular Sciences, 2017,18(7):1420.
DOI URL PMID |
[18] |
Corbin K R, Byrt C S, Bauer S , et al. Prospecting for energy-rich renewable raw materials: Agave leaf case study[J]. PLoS One, 2015,10(8):e0135382.
DOI URL PMID |
[19] |
Escalante A, López Soto D R, Velázquez Gutiérrez J E , et al. Pulque, a traditional Mexican alcoholic fermented beverage: historical, microbiological, and technical aspects[J]. Frontiers in microbiology, 2016,7:1026.
DOI URL PMID |
[20] |
Pereira G M, Ribeiro M G, da Silva B P , et al. Structural characterization of a new steroidal saponin from Agave angustifolia var. Marginata and a preliminary investigation of its in vivo antiulcerogenic activity and in vitro membrane permeability property[J]. Bioorganic & Medicinal Chemistry Letters, 2017,27(18):4345-4349.
DOI URL PMID |
[21] |
Mielenz J R, Rodriguez M, Thompson O A , et al. Development of Agave as a dedicated biomass source: production of biofuels from whole plants[J]. Biotechnology for Biofuels, 2015,8(1):79.
DOI URL PMID |
[22] |
Stewart J R . Agave as a model CAM crop system for a warming and drying world[J]. Frontier in Plant Science, 2015,6:684.
DOI URL PMID |
[23] |
Untergasser A, Cutcutache I, Koressaar T , et al. Primer3- new capabilities and interfaces[J]. Nucleic Acids Research, 2012,40(15):e115.
DOI URL PMID |
[24] |
Petersen T N, Brunak S, von Heijne G , et al. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nature Methods, 2011,8(10):785-786.
DOI URL PMID |
[25] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method [J]. Method, 2001,25(4):402-408.
DOI URL |
[26] |
Lorenzo G D, Ferrari S . Polygalacturonase-inhibiting proteins in defense against phytopathogenic fungi[J]. Current Opinion in Plant Biology, 2002,5:295-299.
DOI URL |
[27] |
Benedetti M, Pontiggia D, Raggi S , et al. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(17):5533-5538.
DOI URL PMID |
[28] | 张燕梅, 李栋梁, 李俊峰 , 等. 烟草疫霉侵染后剑麻H.11648叶片细胞超微结构和防御酶活性研究[J]. 热带作物学报, 2018,39(6):1161-1165. |
[29] |
Ferrari S, Vairo D, Ausubel F M , et al. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection[J]. Plant Cell, 2003,15(1):93-106.
DOI URL PMID |
[30] |
Wang X, Zhu X, Tooley P , et al. Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens[J]. Plant Molecular Biology, 2013,81(4-5):379-400.
DOI URL |
[31] |
Lu L, Zhou Y, Zhou Y , et al. Expression profile analysis of the polygalacturonase-inhibiting protein genes in rice and their responses to phytohormones and fungal infection[J]. Plant Cell Reports, 2012,31(7):1173-1187.
DOI URL |
[32] |
Kobayashi Y, Ohyama Y, Kobayashi Y , et al. STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis[J]. Molecular Plant, 2014,7(2):311-322.
DOI URL |
[1] | FAN Zhiwei,LI Xiaoxia,LIU Yan,XI Jingeng,WANG Ya,SHEN Yide,HUANG Qiaoqiao,YI Kexian. Weed Species, Distribution and Damage on Sisal Plantation and Its Strategy of Control [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1654-1664. |
[2] | XIAO Tujian,MA Yuhua,YUAN Qifeng,XIE Pu,MAO Yongya,YAN Jiawen,LIAO Shiqin. Molecular Cloning and Expression Analysis of Rhythms Clock Output Gene HpGI from Hylocereus polyrhizus [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1298-1304. |
[3] | ZHONG Changkai,XIAO Chunli,ZHANG He,PU Jinji,WU Qiuyu,LIU Yanli,LIU Xiaomei. Sequence Characteristics of Laccase Gene Cglac3 and Its Expression in Two Infection-Related Gene Mutants from Colletotrichum gloeosporioides on Mango [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1202-1207. |
[4] | YANG Tingyu,SHAO Guifang,ZHANG Shui,WANG Jiao,ZHANG Jingrou,ZHAO Kai,DENG Minghua. Cloning and Expression Analysis of Mitochondrial Gene of Cytoplasmic Male Sterile Line CaNAD9 in Pepper (Capsicum annuum L.) [J]. Chinese Journal of Tropical Crops, 2020, 41(5): 978-984. |
[5] | YUAN Xiuyun,XU Shenping,ZHANG Yan,WANG Mofei,JIANG Suhua,LIANG Fang,CUI Bo. Cloning and Expression of Cyclophilin Gene PhCyP from Phalaenopsis [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 315-322. |
[6] | ZHOU Niannian,GAO Jie,DING Mingzhu,AN Yulan,ZHAI Keqing,SHI Jiayin,GAN Defang,LIU Wen. Analysis of Differentially Expressed Genes in Lettuce Leaves Under Different Optical Spectrophotometric Films Based on Transcriptome Sequencing [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 323-332. |
[7] | MA Haiyang,ZHAO Qiufang,CHEN Shu,SHI Weiqi,XIAN Aimin. Bioinformatics Analysis of PEPC Gene Family in Pineapple [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 97-103. |
[8] | LU Zhiwei,HOU Xiaowan,YANG Ziping,ZHANG Yanmei,LI Junfeng,ZHOU Wenzhao. Cloning and Bioinformatics Analysis of AsLEC Gene in Agave sisalana [J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1122-1129. |
[9] | TAN Shibei,XI Jingen,ZHENG Jinlong,HE Chunping,WU Weihuai,LIANG Yanqiong,HUANG Xing,LI Rui,YI Kexian. Effects of Sisal Stalks Returned to the Field with Nitrogen Fertilizer on the Soil Fertility and Sisal Growth [J]. Chinese Journal of Tropical Crops, 2019, 40(5): 839-849. |
[10] | YANG Shuguang,CHEN Yueyi,LI Yan,ZHANG Shixin,ZHANG Xiaofei,ZENG Xia,CHAO Jinquan,TIAN Weimin. Correlation Between the Expression Level of Natural Rubber Biosynthesis Genes and Rubber Yield [J]. Chinese Journal of Tropical Crops, 2019, 40(3): 475-482. |
[11] | YANG Jun,ZHENG Xuelian,GAO Huanhuan,KOU Yan,CHEN Xu,GUO Ao,ZHENG Guohua. Cloning and Expression Analysis of EjNADP-ME2 Gene and Its Promoter in Loquat Fruit [J]. Chinese Journal of Tropical Crops, 2019, 40(3): 490-498. |
[12] | ZHAO Yanjuan,ZHAO Yajuan,LIU Junqi,JIN Tian,CHENG Mao,HUANG Liyu,WANG Zhenzhong,QIN Shiwen. Expression Analysis of Genes Involved in Biosynthesis of Secondary Metabolites for Fusarium oxysporum f. sp. cubense in Response to Three Carbon Sources [J]. Chinese Journal of Tropical Crops, 2019, 40(12): 2440-2446. |
[13] | ZHANG Yanmei,WANG Ruifang,YANG Ziping,LU Zhiwei,LI Junfeng,ZHAO Yanlong,LU Junying,ZHOU Wenzhao. Screening of Suitable Reference Genes for qRT-PCR Normalization in Sisal [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2166-2173. |
[14] | CHEN Zhe,HU Fuchu,RUAN Chengcheng,FAN Hongyan,GUO Lijun,ZHANG Zhili. Bioinformatics and Gene Expression Analysis of Pineapple R2R3- MYB Gene Family [J]. Chinese Journal of Tropical Crops, 2019, 40(10): 1958-1971. |
[15] | ZENG Xiaoling, ZHAO Ruili, ZHONG Kaiqin, ZHU Chaohui, CHEN Mindong. Cloning and Expression Analysis of Ubiquitin-Conjugating Enzyme BclUBE2 Gene in Brassica campestris L. ssp. chinensis var. utilis [J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1722-1777. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||