Chinese Journal of Tropical Crops ›› 2019, Vol. 40 ›› Issue (10): 1875-1888.DOI: 10.3969/j.issn.1000-2561.2019.10.001
• Genomics and Gene Editing of Tropical Plant • Previous Articles Next Articles
LI Dan,CHEN Xiaohui,LAI Zhongxiong()
Received:
2019-07-30
Revised:
2019-08-16
Online:
2019-10-25
Published:
2019-11-04
Contact:
LAI Zhongxiong
LI Dan,CHEN Xiaohui,LAI Zhongxiong. Research Progresses of Tropical Plant Genome[J]. Chinese Journal of Tropical Crops, 2019, 40(10): 1875-1888.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2019.10.001
项目 Items | 香蕉Banana | 龙眼 Longan | 番木瓜 Papaya | 橡胶 Rubber | 枣椰 Date palm | 可可 Cocoa | 咖啡 Coffee | 油棕 Oil palm | 铁皮石斛 Tiepi-shihu | ||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | 阿宽蕉 | |||||||||
NBS | 117 | 93 | 62 | 122 | 17 | 350 | 69 | 53 | 169 | 82 | 83 |
NBS-LRR | 89 | 69 | 51 | 258 | 23 | 47 | 16 | 104 | 63 | 145 | 47 |
CC-NBS-LRR | 27 | — | — | 150 | 4 | 45 | 19 | 82 | 79 | 20 | 13 |
CC-NBS | 30 | 34 | 20 | 37 | 2 | 134 | 40 | 46 | 239 | 10 | 14 |
TIR-NBS | 0 | 0 | 0 | 4 | 2 | 17 | 0 | 4 | 1 | 3 | — |
TIR-NBS-LRR | 0 | — | — | 23 | 6 | 25 | 0 | 8 | 3 | 4 | — |
Total | — | — | — | 932 | 54 | 618 | 179 | 491 | — | 566 | — |
参考文献 Reference | [7] | [8] | [10] | [11] | [5] | [17] | [22] | [6] | [25] | [24] | [28] |
Tab. 2 Numbers of genes that encode domains similar to plant R proteins in sequenced genomes
项目 Items | 香蕉Banana | 龙眼 Longan | 番木瓜 Papaya | 橡胶 Rubber | 枣椰 Date palm | 可可 Cocoa | 咖啡 Coffee | 油棕 Oil palm | 铁皮石斛 Tiepi-shihu | ||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | 阿宽蕉 | |||||||||
NBS | 117 | 93 | 62 | 122 | 17 | 350 | 69 | 53 | 169 | 82 | 83 |
NBS-LRR | 89 | 69 | 51 | 258 | 23 | 47 | 16 | 104 | 63 | 145 | 47 |
CC-NBS-LRR | 27 | — | — | 150 | 4 | 45 | 19 | 82 | 79 | 20 | 13 |
CC-NBS | 30 | 34 | 20 | 37 | 2 | 134 | 40 | 46 | 239 | 10 | 14 |
TIR-NBS | 0 | 0 | 0 | 4 | 2 | 17 | 0 | 4 | 1 | 3 | — |
TIR-NBS-LRR | 0 | — | — | 23 | 6 | 25 | 0 | 8 | 3 | 4 | — |
Total | — | — | — | 932 | 54 | 618 | 179 | 491 | — | 566 | — |
参考文献 Reference | [7] | [8] | [10] | [11] | [5] | [17] | [22] | [6] | [25] | [24] | [28] |
[1] | Sanger F, Air G M, Barrell B G , et al. Nucleotide sequence of bacteriophage φX174 DNA[J]. Nature, 1977,265(5596):687-695. |
[2] | The Arabidopsis Genome Initiative . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000,408(6814):796-815. |
[3] | Jaillon O, Aury J M, Noel B , et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007,449(7161):463-467. |
[4] | Velasco R, Zharkikh A, Troggio M , et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety[J]. PLoS One, 2007,2(12):e1326. |
[5] | Ming R, Hou S, Feng Y , et al. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)[J]. Nature, 2008,452(7190):991-996. |
[6] | Argout X, Salse J, Aury J , et al. The genome of Theobroma cacao[J]. Nature Genetics, 2011,43(2):101-108. |
[7] | D’Hont A, Denoeud F, Aury J-M , et al . The banana (Musa acuminata) genome and the evolution of monocotyledonous plants[J]. Nature, 2012,488(7410):213-217. |
[8] | Davey M W, Gudimella R, Harikrishna J A , et al. A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids[J]. BMC Genomics, 2013,14:683. |
[9] | Wang Z, Miao H X, Liu J H , et al. Musa balbisiana genome reveals subgenome evolution and functional divergence[J]. Nature Plants, 2019,5(8):810-821. |
[10] | Wu W, Yang Y L, He W M , et al. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus[J]. Scientific Reports, 2016,6:31586. |
[11] | Lin Y L, Min J M, Lai R L , et al. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics[J]. GigaScience, 2017,6(5):1-14. |
[12] | Ming R, Vanburen R, Wai C M , et al. The pineapple genome and the evolution of CAM photosynjournal[J]. Nature Genetics, 2015,47(12):1435-1442. |
[13] | Redwan R M, Saidin A, Kumar S V . The draft genome of MD-2 pineapple using hybrid error correction of long reads[J]. DNA Research, 2016,23(5):427-439. |
[14] | Xiao Y, Xu P, Fan H , et al. The genome draft of coconut (Cocos nucifera)[J]. GigaScience, 2017,6(11):1-11. |
[15] | Lantican D V, Strickler S R, Canama A O , et al. De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. ‘Catigan Green Dwarf’) provides insights into genomic variation between Coconut types and related palm species[J]. G3: Genes, Genomes, Genetics, 2019,9(8):2377-2393. |
[16] | Teh B T, Lim K, Young C H , et al. The draft genome of tropical fruit durian (Durio zibethinus)[J]. Nature Genetics, 2017,49(11):1633-1641. |
[17] | Rahman A Y A, Usharraj A O, Misra B B , et al . Draft genome sequence of the rubber tree Hevea brasiliensis[J]. BMC Genomics, 2013,14:75. |
[18] | Tang C, Yang M, Fang Y J , et al. The rubber tree genome reveals new insights into rubber production and species adaptation[J]. Nature Plants, 2016,2(6):16073. |
[19] | Prochnik S, Marri P R, Desany B , et al. The cassava genome: Current progress, future directions[J]. Tropical Plant Biology, 2012,5(1):88-94. |
[20] | Wang W Q, Feng B X, Xiao J F , et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nature Communications, 2014,5(1):5110. |
[21] | Al-Dous E K, George B, Al-Mahmoud M E , et al . De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)[J]. Nature Biotechnology, 2011,29(6):521-527. |
[22] | Al-Mssallem I S, Hu S, Zhang X , et al . Genome sequence of the date palm Phoenix dactylifera L.[J]. Nature Communications. 2013,4(1):2274. |
[23] | Singh R, Ong-Abdullah M, Low E L , et al. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds[J]. Nature, 2013,500(7462):335-339. |
[24] | Jin J, Lee M, Bai B , et al. Draft genome sequence of an elite Dura palm and whole-genome patterns of DNA variation in oil palm[J]. DNA Research, 2016,23(6):527-533. |
[25] | Denoeud F, Carretero-Paulet L, Dereeper A , et al. The coffee genome provides insight into the convergent evolution of caffeine biosynjournal[J]. Science, 2014,345(6201):1181-1184. |
[26] | Tran H T M, Ramaraj T, Furtado A , et al . Use of a draft genome of coffee (Coffea arabica) to identify SNPs associated with caffeine content[J]. Plant Biotechnology Journal, 2018,16(10):1756-1766. |
[27] | Yan L, Wang X, Liu H , et al. The Genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb[J]. Molecular Plant, 2015,8(6):922-934. |
[28] | Zhang G Q, Xu Q, Bian C , et al. The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Scientific Reports, 2016,6:19029. |
[29] | Belser C, Istace B, Denis E , et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps[J]. Nature Plants, 2018,4(11):879-887. |
[30] | Li W M, Dita M, Wu W , et al. Resistance sources to Fusarium oxysporum f. sp. cubense tropical race 4 in banana wild relatives[J]. Plant Pathology, 2015,64(5):1061-1067. |
[31] | Wikström N, Savolainen V, Chase M W . Evolution of the angiosperms: calibrating the family tree[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2001,268(1482):2211-2220. |
[32] | Alverson W S, Whitlock B A, Nyffeler R , et al. Phylogeny of the core Malvales: evidence from ndhF sequence data[J]. American Journal of Botany, 1999,86(10):1474-1486. |
[33] | Prabhakaran Nair K P . The agronomy and economy of important tree crops of the developing world[M]. Burlington: Elsevier, 2010. |
[34] | Tangphatsornruang S, Uthaipaisanwong P, Sangsrakru D , et al. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships[J]. Gene, 2011,475(2):104-112. |
[35] | De Carvalho R, Guerra M . Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species[J]. Hereditas. 2002,136(2):159-168. |
[36] | Boher B, Verdier V . Cassava bacterial blight in Africa: the state of knowledge and implications for designing control strategies[J]. African Crop Science Journal, 1994,2(4):505-509. |
[37] | Reilly K, Bernal D, Cortés D F , et al. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration[J]. Plant Molecular Biology, 2007,64(1-2):187-203. |
[38] | Patil B L, Fauquet C M . Cassava mosaic geminiviruses: actual knowledge and perspectives[J]. Molecular Plant Pathology. 2009,10(5):685-701. |
[39] | Bourgis F, Kilaru A, Cao X , et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(44):12527-12532. |
[40] | Hazzouri K M, Flowers J M, Visser H J , et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop[J]. Nature Communications, 2015,6:8824. |
[41] | Zhang J, Tian Y, Yan L , et al. Genome of plant maca (Lepidium meyenii) illuminates genomic basis for high- altitude adaptation in the central Andes[J]. Molecular Plant, 2016,9(7):1066-1077. |
[42] | 孙恒, 胡强, 金航 , 等. 铁皮石斛化学成分及药理活性研究进展[J]. 中国实验方剂学杂志, 2017,23(11):225-234. |
[43] | 王丛巧, 王培育, 郭艳芳 , 等. 昼夜温差处理下铁皮石斛原球茎松柏苷和紫丁香苷含量的测定[J]. 热带作物学报, 2019,40(2):261-268. |
[44] | 林小苹, 赖钟雄 . 不同光质条件下铁皮石斛多糖含量与磷酸烯醇式丙酮酸羧化酶基因表达变化[J]. 热带作物学报, 2017,38(5):838-842. |
[45] | 黄晓君, 聂少平, 王玉婷 , 等. 铁皮石斛多糖提取工艺优化及其成分分析[J]. 食品科学, 2013,34(22):21-26. |
[46] | 蔡璨璨, 李卿, 段承俐 , 等. 铁皮石斛Csl基因家族生物信息学及表达分析[J]. 基因组学与应用生物学, 2019,38(5):2159-2166. |
[47] | Tian Y, Zeng Y, Zhang J , et al. High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop[J]. Science China Life Sciences, 2015,58(7):627-638. |
[48] | Chang Y, Liu H, Liu M , , et al. The draft genomes of five agriculturally important African orphan crops[J/OL]. GigaScience, 2019, 8(3). |
[49] | Zhang G, Tian Y, Zhang J , et al. Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge)[J]. GigaScience, 2015,4:62. |
[50] | Chen W, Kui L, Zhang G , et al. Whole-genome sequencing and analysis of the Chinese herbal plant Panax notoginseng[J]. Molecular Plant, 2017,10(6):899-902. |
[51] | DeYoung B J, Innes R W . Plant NBS-LRR proteins in pathogen sensing and host defense[J]. Nature Immunology, 2006,7(12):1243. |
[52] | Mun J H, Yu H J, Park S , et al. Genome-wide identification of NBS-encoding resistance genes in Brassica rapa[J]. Molecular Genetics & Genomics, 2009,282:617-631. |
[53] | McHale L, Tan X, Koehl P , et al . Plant NBS-LRR proteins: adaptable guards[J]. Genome Biology, 2006,7(4):212. |
[54] | 李威 . 雷蒙德氏棉和亚洲棉萜类化合物合成关键基因家族的全基因组鉴定和系统发育研究[D]. 杭州: 浙江大学, 2014. |
[55] | Chen X, Yang W, Zhang L , et al. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple[J]. Computational Biology and Chemistry, 2017,70:40-48. |
[56] | He C, Zhang J, Liu X , et al. Identification of genes involved in biosynjournal of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis[J]. Plant Molecular Biology, 2015,88(3):219-231. |
[57] | Li H L, Guo D, Yang Z P , et al. Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis[J]. Genomics, 2014,104(1):14-23. |
[58] | 冯新 . 香蕉SOD基因家族的全基因组鉴定及功能分析[D]. 福州: 福建农林大学, 2016. |
[59] | 徐小萍, 陈晓慧, 吕科良 , 等. 龙眼漆酶家族成员全基因组结构与功能分析[J]. 应用与环境生物学报, 2018,24(4):833-844. |
[60] | 张雅玲, 方智振, 赖钟雄 . 香蕉Ran家族基因的全基因组分析[J]. 江西农业大学学报, 2015,37(1):157-162. |
[61] | 陈芳兰 . 野生蕉β-1,3葡聚糖酶基因克隆及抗寒相关功能分析[D]. 福州: 福建农林大学, 2016. |
[62] | 邓素芳 . 基于RNA-Seq的野生蕉(Musa itinerans)果皮颜色差异形成的分子机制研究[D]. 福州: 福建农林大学, 2018. |
[63] | 刘炜婳 . 基于全转录组学的野生蕉(Musa itinerans)低温胁迫响应机制研究[D]. 福州: 福建农林大学, 2018. |
[64] | Xu H M, Yu Q Y, Shi Y , et al. PGD: Pineapple genomics database[J]. Horticulture Research, 2018,5:66. |
[65] |
柳觐, 李开雄, 孔广红 , 等. 云南芒果种质基因组大小测定与变异分析[J]. 热带亚热带植物学报, 2015,23(4):386-390.
DOI |
[66] | Ravishankar K V, Dinesh M R, Nischita P , et al. Development and characterization of microsatellite markers in mango (Mangifera indica) using next-generation sequencing technology and their transferability across species[J]. Molecular Breeding, 2015,35(3):93. |
[67] | Zhang J, Zhang X, Tang H , et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.[J]. Nature Genetics, 2018,50(11):1565-1573. |
[68] | Zhang X, Zhang S, Zhao Q , et al. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data[J]. Nature Plants, 2019,5(8):833-845. |
[69] | Chapman J A, Mascher M, Buluc A , et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome[J]. Genome Biology, 2015,16:26. |
[70] | Ming R, Man Wai C . Assembling allopolyploid genomes: no longer formidable[J]. Genome Biology, 2015,16:27. |
[1] | GAO Shengfeng, XU Bishuang, LU Daqian, LIU Aiqin, GOU Yafeng, SUN Shiwei, WANG Zheng, MENG Qianqian. Whole Genome Sequencing and Analysis of the Bio-control Strain Bacillus velezensis Z [J]. Chinese Journal of Tropical Crops, 2021, 42(5): 1216-1222. |
[2] | GAO Shengfeng LIU Aiqin , SANG Liwei SUN Shiwei GOU Yafeng WANG Zheng MENG Qianqian. Whole Genome Sequencing and Comparative Genomics Analysis of Bacillus subtilis VD18R19 with Biocontrol Activity Against Pepper Phytophtora Rot Disease [J]. Chinese Journal of Tropical Crops, 2018, 39(10): 2021-2027. |
[3] | HUANG Qixing ZUO Jiao KONG Hua GUO Yunling ZHOU Xia GUO Anping. Data-mining and Diversity Analysis of EST-SSRs from 11 Tropical Plant Species [J]. Chinese Journal of Tropical Crops, 2012, 33(7): 1208-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||