Chinese Journal of Tropical Crops ›› 2019, Vol. 40 ›› Issue (8): 1537-1545.DOI: 10.3969/j.issn.1000-2561.2019.08.012
• Biotechnology and Tissue Culture • Previous Articles Next Articles
LI Suli,LIU Fangjun,LI Zhigang,LAI Peiheng,LONG Ansi
Received:
2019-01-18
Revised:
2019-04-13
Online:
2019-08-25
Published:
2019-08-20
CLC Number:
LI Suli,LIU Fangjun,LI Zhigang,LAI Peiheng,LONG Ansi. Optimization of Extraction Conditions and Methods for Sugarcane Protoplast RNA[J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1537-1545.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2019.08.012
基因名称 Gene name | 引物序列(5°-3°) Primer sequence (5°-3°) |
---|---|
GADPH | F:AAGGGTGGTGCCAAGAAGG R:CAAGGGGAGCAAGGCAGTT |
DREB | F:GCCTGGTACATCATGCGAGT R:CCATTCTGCCTTTAGGGAGC |
Tab. 1 RT-PCR primer sequence
基因名称 Gene name | 引物序列(5°-3°) Primer sequence (5°-3°) |
---|---|
GADPH | F:AAGGGTGGTGCCAAGAAGG R:CAAGGGGAGCAAGGCAGTT |
DREB | F:GCCTGGTACATCATGCGAGT R:CCATTCTGCCTTTAGGGAGC |
Fig. 1 Morphology of protoplast at different osmotic pressures A: Protoplasts in normal form, the cell membrane is flat and clear, and the shape is full; B: Protoplasts with cell membrane shrinkage, the edges of the cell membrane are wavy and vary in shape (as shown by the arrows); C: Protoplasts with increased cell debris, many fragments of protoplast rupture in the protoplast suspension (as shown by the arrows). Bar=20 μm.
Fig. 3 Protoplasts with different viability A: Protoplasts with 30% viability; B: Protoplasts with 50% viability; C: Protoplasts with 70% viability; D: Protoplasts with 90% viability. Bar=20 μm, and blue cells are dead cells stained with trypan blue.
品种 Variety | 指标 Index | 甘露醇浓度 Mannitol concentration | 原生质体活力 Protoplast viability | RNase活性 RNase activity |
---|---|---|---|---|
ROC22 | 甘露醇浓度(mannitol concentration) | 1 | ||
原生质体活力(protoplast viability) | -0.023 | 1 | ||
RNase活性(RNase activity) | 0.926* | -0.965** | 1 | |
GT28 | 甘露醇浓度(mannitol concentration) | 1 | ||
原生质体活力(protoplast viability) | 0.013 | 1 | ||
RNase活性(RNase activity) | 0.978** | -0.976** | 1 |
Tab. 2 Correlation of osmotic pressure with protoplast viability, yield and RNase activity
品种 Variety | 指标 Index | 甘露醇浓度 Mannitol concentration | 原生质体活力 Protoplast viability | RNase活性 RNase activity |
---|---|---|---|---|
ROC22 | 甘露醇浓度(mannitol concentration) | 1 | ||
原生质体活力(protoplast viability) | -0.023 | 1 | ||
RNase活性(RNase activity) | 0.926* | -0.965** | 1 | |
GT28 | 甘露醇浓度(mannitol concentration) | 1 | ||
原生质体活力(protoplast viability) | 0.013 | 1 | ||
RNase活性(RNase activity) | 0.978** | -0.976** | 1 |
Fig. 6 Electrophoresis of total RNA from protoplasts with different viability 1: Protoplast with 30% vitality; 2: Protoplast with 50% vitality; 3: Protoplast with 70% vitality; 4: Protoplast with 90% vitality.
原生质体活力 Protoplast viability/% | D260 nm/D280 nm | D260 nm/D230 nm | RNA浓度 RNA concentration/(ng·μL-1) | RNA产量 RNA yield/[μg·(106 cell)-1] |
---|---|---|---|---|
30 | 1.692 | 1.520 | 234.000 | 4.68±0.21c |
50 | 1.985 | 1.793 | 278.333 | 5.57±0.23c |
70 | 1.996 | 2.116 | 1048.333 | 20.97±1.21b |
90 | 2.001 | 2.014 | 1861.667 | 37.23±0.62a |
Tab. 3 Comparison of purity, concentration and yield of total RNA from protoplasts with different viability
原生质体活力 Protoplast viability/% | D260 nm/D280 nm | D260 nm/D230 nm | RNA浓度 RNA concentration/(ng·μL-1) | RNA产量 RNA yield/[μg·(106 cell)-1] |
---|---|---|---|---|
30 | 1.692 | 1.520 | 234.000 | 4.68±0.21c |
50 | 1.985 | 1.793 | 278.333 | 5.57±0.23c |
70 | 1.996 | 2.116 | 1048.333 | 20.97±1.21b |
90 | 2.001 | 2.014 | 1861.667 | 37.23±0.62a |
Fig. 7 Electrophoresis of total RNA from four methods 1: Trizol method; 2: Improved Trizol method; 3: Improved CTAB method; 4: TaKaRa RNA extraction kit.
方法 Method | D260 nm/D280 nm | D260 nm/D230 nm | RNA浓度 RNA concentration/(ng·μL-1) | RNA产量 RNA yield/[μg·(106 cells)-1] |
---|---|---|---|---|
Trizol法Trizol method | 1.915 | 0.987 | 1341.667 | 26.83±0.29b |
改良Trizol法 Improved Trizol method | 2.045 | 2.268 | 1944.333 | 38.89±0.23a |
改良CTAB法 Improved CTAB method | 1.862 | 1.428 | 137.667 | 2.75±0.17d |
TaKaRa RNA试剂盒法 TaKaRa RNA extraction kit | 1.953 | 2.041 | 891 | 17.82±0.34c |
Tab. 4 Comparison of purity, concentration and yield of RNA from four methods
方法 Method | D260 nm/D280 nm | D260 nm/D230 nm | RNA浓度 RNA concentration/(ng·μL-1) | RNA产量 RNA yield/[μg·(106 cells)-1] |
---|---|---|---|---|
Trizol法Trizol method | 1.915 | 0.987 | 1341.667 | 26.83±0.29b |
改良Trizol法 Improved Trizol method | 2.045 | 2.268 | 1944.333 | 38.89±0.23a |
改良CTAB法 Improved CTAB method | 1.862 | 1.428 | 137.667 | 2.75±0.17d |
TaKaRa RNA试剂盒法 TaKaRa RNA extraction kit | 1.953 | 2.041 | 891 | 17.82±0.34c |
Fig. 8 RT-PCR amplifications of GADPH gene and DREB gene M: DL2000 DNA Marker; 1: Trizol method; 2: Improved Trizol method; 3: Improved CTAB method; 4: TaKaRa RNA extraction kit.
[1] | Wang X, Zhou J, Yang Y , et al. Transcriptome analysis of a progeny of somatic hybrids of cultivated rice (Oryza sativa L.) and wild rice (Oryza meyeriana L.) with high resistance to bacterial blight[J]. Phytopathol, 2013,161:324-334. |
[2] | Xia G M, Li Z Y, Wang S L , et al. Asymmetric somatic hybridization between haploid common wheat and UV-mediated Haynaldia villosa[J]. Plant Science, 1998,137(2):217-223. |
[3] | Cai Y, Xiang F, Zhi D , et al. Genotyping of somatic hybrids between Festuca arundinacea Schreb. And Triticum aestivum L.[J]. Plant Cell Reports, 2007,26(10):1809-1819. |
[4] | Xiang F, Xia G, Chen H . Asymmetric somatic hybridization between wheat (Triticum,aestivum) and Avcna sative L[J]. Science in China Series C: Life Sciences, 2003,46(3):243-252. |
[5] | Aftab F, Zafar Y, Lqbal J . Optimization of conditions for electrofusion in sugarcane protoplasts[J]. Pakistan Journal of Botany, 2002,34(3):297-301. |
[6] | 宋亚妮 . 甘蔗原生质体的融合及杂核细胞再生条件的优化[D]. 南宁: 广西大学, 2018. |
[7] | 何若天, 覃伟 . 甘蔗和烟草幼叶原生质体的核酸含量与核酸酶活性及其影响因素[J]. 广西植物, 1997(1):90-94. |
[8] | 史晓朋 . 甘蔗原生质体的分离与培养体系的建立和优化[D]. 南宁: 广西大学, 2001. |
[9] | 何明, 张子健, 钟汉明 , 等. 影响甘蔗胚怀愈伤组织原生质体培养的主要因素[J]. 西南农业学报, 1994,7(4):71-76. |
[10] | 于寒松, 彭帅, 谢远红 , 等. 一种RNA提取试剂盒-Trizol的使用方法初探[J]. 食品科学, 2005,26(11):39-42. |
[11] | 杨昭, 何春兰, 李芬芳 , 等. 改良热硼酸法提取青香蕉果肉总RNA的条件优化[J]. 江苏农业科学, 2017,45(15):49-53. |
[12] | 冯立国, 李婷琳, 陈陈 , 等. 玫瑰花组织总RNA提取方法研究[J]. 扬州大学学报(农业与生命科学版), 2013,34(4):104-107. |
[13] | 赵祥祥, 刘福霞, 唐塘 , 等. 成熟油菜次生休眠种子RNA的快速高效提取方法[J]. 扬州大学学报(农业与生命科学版), 2013,34(1):64-67. |
[14] | 侯哲, 陆秀君, 张晓林 , 等. 天女木兰不同组织总RNA提取方法的筛选与优化[J]. 中南林业科技大学学报, 2016,36(7):109-115. |
[15] | 李素丽, 宋亚妮, 李志刚 , 等. 不同冻存条件对甘蔗原生质体活力和再生能力的影响[J]. 广西植物, 2019,39(04):427-436. |
[16] | 曾博雅 . 水稻悬浮细胞的包埋脱水法超低温保存以及多酚诱导的细胞程序性死亡现象[D]. 南京: 南京农业大学, 2009. |
[17] | 朱治平 . 植物组织中核酸含量的测定[A]. 上海植物生理学会. 植物生理学实验手册[M]. 上海: 上海科学技术出版社, 1985: 44-47. |
[18] | Salzman R A, Fujita T, Hasegawa P M , et al. An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates[J]. Plant Molecular Biology Reporter, 1999,17:11-17. |
[19] | Liao Z H, Chen M, Guo L , et al. Rapid isolation of high-quality total RNA from taxus and ginkgo[J]. Reparative Biochemistry & Biotechnology, 2004,34(3):209-214. |
[20] | 颜秋生, 李向辉 . 甘蔗原生质体的分离、培养与愈伤组织的形成[J]. 科学通报, 1983(12):752-755. |
[21] | Premecz G, Ola’h T, Gulya’s A , et al. Is the increase in ribonuclease level in isolated tobacco protoplasts due to osmotic stress?[J] Plant Science Letters, 1977,9:195-200. |
[22] | 唐佳妮, 林二培, 黄华宏 , 等. 杉木叶片原生质体分离及RNA提取体系的建立[J]. 林业科学, 2018(4):38-48. |
[23] | 徐小勇, 许晓玲, 张一卉 , 等. 柑橘原生质体总RNA提取方法研究[J]. 扬州大学学报(农业与生命科学版), 2016,37(2):111-114. |
[24] | Couch J A, Fritz P J . Isolation of DNA from plants high in polyphenolics[J]. Plant Molecular Biology Reporter, 1990,8(1):8-12. |
[25] | Bahloul M, Burkard G . An improved method for the isolation of total RNA from spruce tissues[J]. Plant Molecular Biology Reporter, 1993,11(3):212-215. |
[1] | DONG Na,LI Chengru,CHEN Lei,ZHAO Yamei,ZHUANG Qiurong,ZHAI Junwen,WU Shasha. Establishment and Application of Ornamental Evaluation System for Oxalis [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1770-1778. |
[2] | SU Ziying,LI Lan,ZHANG Xiying,CHEN Meixuan,CHEN Lijun,LI Yuling. Ornamental Evaluation of Endemic Orchids from Guangdong Province [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1560-1565. |
[3] | WANG Yi,HU Meijiao,LI Min,GAO Zhaoyin,HONG Xiaoyu,ZHANG Shaogang,ZHAO Chao. Biological Characteristics of Alternaria Leaf Blight of Scaevola taccada and Screening of Fungicides in vitro [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1634-1641. |
[4] | QIAO Yina,LI Yunge,LIU Pin,LIU Kai,ZHANG Xiaoqing,RONG Jundong,CHEN Liguang. Photosynthetic Characteristics and Chlorophyll Fluorescence Characteristics of Ten Ornamental Bamboo Species [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1373-1379. |
[5] | TANG Yuwei,LONG Lingyun,HUANG Qiuwei,SU Qun,CHI Zhaojin,LU Jiashi,MAO Liyan. Pollen Germination in vitro and Cryopreservation Reserch of Anecphya Waterlily [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1380-1386. |
[6] | CHE Haiyan,CAO Xueren,HE Yanheng,LUO Daquan. Distribution and Identification of Viruses from Cucumber in Hainan Island [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2280-2284. |
[7] | HU Lisong,WU Siting,DUAN Xingshuai,CEN Yi,SU Yuefeng,FAN Rui,WU Baoduo,HAO Chaoyun. The Identification of Internal Control Genes Based on Genome and Transcriptome Data in Black Pepper (Piper nigrum L.) [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2120-2129. |
[8] | WANG Shiquan. Comparative Study on Determination Methods of Pollen Viability in Paeonia decomposita [J]. Chinese Journal of Tropical Crops, 2020, 41(1): 57-62. |
[9] | YAN Jiawen,YUAN Qifeng,XIE Pu,WANG Lijuan,MA Yuhua,WANG Zhengyuan. Identification of Viruses Infecting Passiflora edulis in Guizhou Province by Small RNA Sequencing [J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1577-1584. |
[10] | LI Jin,DUAN Tingting,ZHENG Chao,LIN Zhong,LIANG Yanqiu,GAO Yu,DENG Kai. The Photosynthesis and Growth Characteristics of Two Sugarcane Cultivars in Different Phosphorus Rate Condition [J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1108-1114. |
[11] | JIN Xiaotuo,MA Jiyong,ZHOU Yanyu,CHEN Lijun,LI Tao,ZHAO Hongwei. Bacterial Diversity and Community Structure Characteristics of Mango Orchard Soil under Reduced Chemical Fertilizer and Increased Organic Fertilizer Application [J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1205-1212. |
[12] | WANG Jingyu,CHEN Xiaohui,SHEN Xu,XU Xiaoping,ZHANG Zihao,LIN Yuling,LAI Zhongxiong. Genome-wide Identification and Expression Analysis of RNA Methylation Related Genes During Somatic Embryogenesis in Dimocarpus longan Lour. [J]. Chinese Journal of Tropical Crops, 2019, 40(10): 1902-1913. |
[13] | DENG Sufang,CHENG Chunzhen,LIN Yuling,LAI Zhongxiong. miRNA Expression Profile and Target Gene Analysis of Different Color Peels in Wild Banana (Musa itinerans) [J]. Chinese Journal of Tropical Crops, 2019, 40(10): 1979-1990. |
[14] | CAI Jimiao,SHI Tao,LI Chaoping,WANG Guofen,LU Cuimei,HUANG Guixiu. Survey, Pathogen Identification of a White Spot Disease on Cassava and Its Biological Characteristics in China [J]. Chinese Journal of Tropical Crops, 2019, 40(1): 130-138. |
[15] | LIU Xiaoxuan,LI Weilin,ZHANG Tong,ZHOU Guohui. Genome Sequence of Tomato mottle mosaic virus Isolated from Tomato in Hainan, China [J]. Chinese Journal of Tropical Crops, 2019, 40(1): 139-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||