Chinese Journal of Tropical Crops ›› 2019, Vol. 40 ›› Issue (6): 1163-1170.DOI: 10.3969/j.issn.1000-2561.2019.06.018
• Crop Pests, Diseases and Their Control, Environmental Protection • Previous Articles Next Articles
Gao Jintao1,2,LIANG Xiao2,WU Chunling2,CHEN Qing2,*(),CHEN Qian1,2
Received:
2018-10-28
Revised:
2019-03-04
Online:
2019-06-25
Published:
2019-07-02
Contact:
CHEN Qing
CLC Number:
Gao Jintao,LIANG Xiao,WU Chunling,CHEN Qing,CHEN Qian. Function of Red Spider Mite (Tetranychus cinnabarinus) Transcription Factor TcNrf2 on Regulating the Transcription of Antioxidant Enzyme Genes[J]. Chinese Journal of Tropical Crops, 2019, 40(6): 1163-1170.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2019.06.018
引物名称 Primers | 序列 Sequences (5'-3') | 退火温度 Tm /℃ | 产物大小 Product size/bp |
---|---|---|---|
TcNrf2-F | GAGGGGATCTGCTTGTCCAG | 59.8 | 111 |
TcNrf2-R | GCTATTGTGAGCGATTGGCG | 60.0 | |
TcSOD-F | TGGTGACAACACAAACGG | 58.3 | 196 |
TcSOD-R | CTCCACAAGCAATACGGC | 58.4 | |
TcCAT-F | TACAAACGGTGGGCAAGA | 59.6 | 212 |
TcCAT-R | GAGGGTCACGAACAGTATCAGC | 60.4 | |
Tcactin-F | CAGCCATGTATGTTGCCATC | 59.4 | 166 |
Tcactin-R | AAATCACGACCAGCCAAATC | 58.5 |
Tab. 1 The primers of qPCR for the detection of relative T. cinnabarinus genes
引物名称 Primers | 序列 Sequences (5'-3') | 退火温度 Tm /℃ | 产物大小 Product size/bp |
---|---|---|---|
TcNrf2-F | GAGGGGATCTGCTTGTCCAG | 59.8 | 111 |
TcNrf2-R | GCTATTGTGAGCGATTGGCG | 60.0 | |
TcSOD-F | TGGTGACAACACAAACGG | 58.3 | 196 |
TcSOD-R | CTCCACAAGCAATACGGC | 58.4 | |
TcCAT-F | TACAAACGGTGGGCAAGA | 59.6 | 212 |
TcCAT-R | GAGGGTCACGAACAGTATCAGC | 60.4 | |
Tcactin-F | CAGCCATGTATGTTGCCATC | 59.4 | 166 |
Tcactin-R | AAATCACGACCAGCCAAATC | 58.5 |
木薯品种 Cassava cultivars | 观察时间 Time/d | BA浓度Concentration of BA/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 6.67±1.92a | 6.67±1.92a | 3.33±0.56b | 3.33±0.00b | 3.33±0.56b | 0.00c |
4 | 14.29±2.13a | 10.34±1.86bc | 7.14±1.35c | 4.17±1.82d | 3.45±1.34d | 0.00e | |
8 | 20.96±4.05a | 17.01±3.78b | 10.47±1.91c | 7.50±1.82d | 6.78±1.90e | 0.00f | |
C1115 | 1 | 13.33±2.18a | 10.00±1.84b | 6.67±1.57c | 3.33±0.00d | 3.33±0.56d | 3.33±0.56d |
4 | 21.43±3.15a | 13.04±2.78b | 11.58±3.28b | 12.05±1.76b | 12.14±1.87b | 12.57±2.16b | |
8 | 64.76±5.33a | 53.04±4.62b | 47.25±4.85c | 45.33±1.76c | 39.14±1.87c | 32.57±2.16d |
Tab. 2 Effects of different concentrations of TcNrf2 inhibitor BA on mortalities of T. cinnabarinus %
木薯品种 Cassava cultivars | 观察时间 Time/d | BA浓度Concentration of BA/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 6.67±1.92a | 6.67±1.92a | 3.33±0.56b | 3.33±0.00b | 3.33±0.56b | 0.00c |
4 | 14.29±2.13a | 10.34±1.86bc | 7.14±1.35c | 4.17±1.82d | 3.45±1.34d | 0.00e | |
8 | 20.96±4.05a | 17.01±3.78b | 10.47±1.91c | 7.50±1.82d | 6.78±1.90e | 0.00f | |
C1115 | 1 | 13.33±2.18a | 10.00±1.84b | 6.67±1.57c | 3.33±0.00d | 3.33±0.56d | 3.33±0.56d |
4 | 21.43±3.15a | 13.04±2.78b | 11.58±3.28b | 12.05±1.76b | 12.14±1.87b | 12.57±2.16b | |
8 | 64.76±5.33a | 53.04±4.62b | 47.25±4.85c | 45.33±1.76c | 39.14±1.87c | 32.57±2.16d |
木薯品种 Cassava cultivars | 观察时间 Time/d | RA浓度Concentration of RA/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 3.33±1.92a | 0. 00b | 0.00b | 0.00b | 0.00b | 0.00b |
4 | 4.71±1.13b | 7.14±1.86a | 7.57±1.35a | 3.33±1.92c | 0.00d | 0.00d | |
8 | 9.85±2.05a | 8.14±1.86a | 8.57±1.35a | 8.33±1.74a | 3.15±0.97b | 3.56±0.53b | |
C1115 | 1 | 3.33±1.92a | 3.33±1.92a | 0.00b | 0.00b | 0.00b | 0.00b |
4 | 18.71±3.15a | 17.14±2.78a | 16.57±3.28a | 15.25±2.14a | 15.26±1.37a | 15.33±1.92a | |
8 | 38.71±7.23a | 36.14±5.79a | 36.57±6.28a | 34.28±5.18a | 33.76±6.31a | 34.57±5.73a |
Tab. 3 Effects of different concentrations of TcNrf2 inhibitor RA on mortalities of T. cinnabarinus %
木薯品种 Cassava cultivars | 观察时间 Time/d | RA浓度Concentration of RA/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 3.33±1.92a | 0. 00b | 0.00b | 0.00b | 0.00b | 0.00b |
4 | 4.71±1.13b | 7.14±1.86a | 7.57±1.35a | 3.33±1.92c | 0.00d | 0.00d | |
8 | 9.85±2.05a | 8.14±1.86a | 8.57±1.35a | 8.33±1.74a | 3.15±0.97b | 3.56±0.53b | |
C1115 | 1 | 3.33±1.92a | 3.33±1.92a | 0.00b | 0.00b | 0.00b | 0.00b |
4 | 18.71±3.15a | 17.14±2.78a | 16.57±3.28a | 15.25±2.14a | 15.26±1.37a | 15.33±1.92a | |
8 | 38.71±7.23a | 36.14±5.79a | 36.57±6.28a | 34.28±5.18a | 33.76±6.31a | 34.57±5.73a |
木薯品种 Cassava cultivars | 观察时间 Time/d | TBHQ浓度Concentration of TBHQ/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 3.33±1.92a | 0.00b | 3.33±1.92a | 0.00b | 0.00b | 0.00b |
4 | 8.69±2.17a | 3.85±1.76b | 3.45±0.00b | 3.33±1.92b | 3.33±1.92b | 3.33±1.92b | |
8 | 11.54±2.78a | 3.85±1.76c | 6.78±1.92b | 3.33±1.92c | 3.33±1.92c | 3.33±1.92c | |
C1115 | 1 | 3.33±1.21a | 3.52±1.56a | 3.86±1.82a | 3.33±1.92a | 0.00b | 0.00b |
4 | 16.67±1.52a | 14.00±1.98a | 13.38±2.97a | 9.97±3.13b | 7.05±1.57b | 14.58±2.16a | |
8 | 40.00±2.73a | 37.52±3.54a | 33.17±3.74a | 25.66±3.84b | 24.33±0.00b | 36.40±1.92a |
Tab. 4 Effects of different concentrations of TcNrf2 activator TBHQ on mortalities of T. cinnabarinus %
木薯品种 Cassava cultivars | 观察时间 Time/d | TBHQ浓度Concentration of TBHQ/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 3.33±1.92a | 0.00b | 3.33±1.92a | 0.00b | 0.00b | 0.00b |
4 | 8.69±2.17a | 3.85±1.76b | 3.45±0.00b | 3.33±1.92b | 3.33±1.92b | 3.33±1.92b | |
8 | 11.54±2.78a | 3.85±1.76c | 6.78±1.92b | 3.33±1.92c | 3.33±1.92c | 3.33±1.92c | |
C1115 | 1 | 3.33±1.21a | 3.52±1.56a | 3.86±1.82a | 3.33±1.92a | 0.00b | 0.00b |
4 | 16.67±1.52a | 14.00±1.98a | 13.38±2.97a | 9.97±3.13b | 7.05±1.57b | 14.58±2.16a | |
8 | 40.00±2.73a | 37.52±3.54a | 33.17±3.74a | 25.66±3.84b | 24.33±0.00b | 36.40±1.92a |
木薯品种 Cassava cultivars | 观察时间 Time/d | D3T浓度Concentration of D3T/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 6.92±2.13a | 6.94±1.97a | 3.33±1.35b | 3.33±0.00b | 3.33±1.65b | 0.00c |
4 | 8.00±1.45a | 7.39±2.06ab | 5.54±2.09b | 5.69±1.87b | 4.17±1.92b | 0.00c | |
8 | 9.92±3.58a | 10.33±5.42a | 8.87±3.44ab | 7.02±1.87b | 4.17±1.92c | 0.00d | |
C1115 | 1 | 13.33±2.18a | 10.00±1.84b | 10.00±1.57b | 6.67±0.00c | 6.67±0.00c | 0.00d |
4 | 14.07±3.45a | 13.69±2.16a | 13.87±1.21a | 8.87±2.05b | 7.87±2.05b | 13.33±1.92a | |
8 | 39.40±5.63a | 37.69±4.00ab | 33.87±2.78b | 26.67±3.52c | 22.67±4.12c | 37.33±3.92ab |
Tab.5 Effects of different concentrations of TcNrf2 activator D3T on mortalities of T. cinnabarinus %
木薯品种 Cassava cultivars | 观察时间 Time/d | D3T浓度Concentration of D3T/(μmol·L-1) | |||||
---|---|---|---|---|---|---|---|
20.00 | 10.00 | 5.00 | 2.50 | 1.25 | 0 (control) | ||
BRA900 | 1 | 6.92±2.13a | 6.94±1.97a | 3.33±1.35b | 3.33±0.00b | 3.33±1.65b | 0.00c |
4 | 8.00±1.45a | 7.39±2.06ab | 5.54±2.09b | 5.69±1.87b | 4.17±1.92b | 0.00c | |
8 | 9.92±3.58a | 10.33±5.42a | 8.87±3.44ab | 7.02±1.87b | 4.17±1.92c | 0.00d | |
C1115 | 1 | 13.33±2.18a | 10.00±1.84b | 10.00±1.57b | 6.67±0.00c | 6.67±0.00c | 0.00d |
4 | 14.07±3.45a | 13.69±2.16a | 13.87±1.21a | 8.87±2.05b | 7.87±2.05b | 13.33±1.92a | |
8 | 39.40±5.63a | 37.69±4.00ab | 33.87±2.78b | 26.67±3.52c | 22.67±4.12c | 37.33±3.92ab |
Fig. 1 Effects on TcNrf2 transcripts of T.cinnabarus while feeding on mite resistant and susceptible cassava cultivar number above the error bar indicates the relative change fold of TcNrf2 expression after the mite fed on resistant and susceptible cassava cultivars for 1, 4 and 8 d, which is relative to those before feeding. Each data is the result of three repetitions, and * means the change fold is significantly different (P < 0.05).
Fig. 2 Effects on transcription of TcNrf2 while T. cinnabarinus were fed on cassava leaves treated by different chemicals A: BRA900; B: C1115; the changes in TcNrf2 transcript levels were presented as the fold of the levels in T. cinnabarinus while fed on different chemical-treated cassava leaves for 1, 4 and 8 d relative to those feeding on untreated leaves (controls). Each data is average of three replications, and different letters above the columns indicated significant transcript levels (P<0.05).
Fig. 3 Effects on transcription of TcSOD while T. cinnabarinus were fed on cassava leaves treated by different chemicals A: BRA900; B: C1115; the changes in TcSOD transcript levels were presented as the fold of the levels in T. cinnabarinus while fed on different chemical-treated cassava leaves for 1, 4 and 8 d relative to those feeding on untreated leaves (controls). Each data is average of three replications, and different letters above the columns indicated significant transcript levels (P<0.05).
Fig. 4 Effects on transcription of TcCAT while T. cinnabarinus were fed on cassava leaves treated by different chemicals A: BRA900; B: C1115; the changes in TcCAT transcript levels were presented as the fold of the levels in T. cinnabarinus while fed on different chemical-treated cassava leaves for 1, 4 and 8 d relative to those feeding on untreated leaves (controls). Each data is average of three replications, and different letters above the columns indicated significant transcript levels (P<0.05).
[1] | 古碧, 李开绵, 张振文 , 等. 我国木薯加工产业发展现状及发展趋势[J]. 农业工程技术(农产品加工业), 2013,11:25-31. |
[2] | 李开绵, 陈青, 黄洁 , 等. 中国现代农业产业可持续发展战略研究: 木薯分册[M]. 北京: 中国农业出版社, 2016. |
[3] | 程立生 . 中国朱砂叶螨各地理种群形态变异研究[J]. 热带作物学报, 1998,1(1):83-86. |
[4] | 陈青, 卢芙萍, 黄贵修 , 等. 木薯害虫普查及其安全性评估[J]. 热带作物学报, 2010,31(5):819-827. |
[5] | 李迁, 卢芙萍, 陈青 , 等. 木薯品种对朱砂叶螨的抗性评价[J]. 热带作物学报, 2015,36(1):143-151. |
[6] |
Ray P, Huang B W, Tsuji Y . Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling[J]. Cell Signal, 2012,24(5):981-990.
DOI URL |
[7] |
Gechev T S, Van B F, Stone J M , et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death[J]. Bioessays, 2006,28(11):1091-1101.
DOI URL |
[8] | 覃玉娥, 刘朝奇 . Nrf2及其相关抗氧化基因的miRNA调控研究进展[J]. 生物技术通报, 2013,8(9):34-37. |
[9] |
Denicola G M, Karreth F A, Humpton T J , et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis[J]. Nature, 2011,475(7354):106-109.
DOI |
[10] |
Motohashi H, Yamamoto M . Nrf2-Keap1 defines a physiologically important stress response mechanism[J]. Trends in Molecular Medicine, 2004,10(11):549-557.
DOI URL |
[11] |
Pendyala S, Moitra J, Kalari S , et al. Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: Identification of functional antioxidant response elements on the Nox4 promoter[J]. Free Radical Biology and Medicine, 2011,50(12):1749-1759.
DOI URL |
[12] | Buelnachontal M, Guevarachávez J G, Silvapalacios A , et al. Nrf2-regulated antioxidant response is activated by protein kinase C in postconditioned rat hearts[J]. Free Radical Biology & Medicine, 2014,74(5):145-156. |
[13] |
Li Y, Cao Y, Wang F , et al. Scrotal heat induced the Nrf2-driven antioxidant response during oxidative stress and apoptosis in the mouse testis[J]. Acta histochemica, 2014,116(5):883-890.
DOI URL |
[14] |
Wang L, Gallagher E P . Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish[J]. Toxicology and Applied Pharmacology, 2013,266(2):177-186.
DOI URL |
[15] | Sykiotis G P, Bohmann D . Keap1/Nrf2 Signaling Regulates Oxidative Stress Tolerance and Lifespan in Drosophila[J]. Developmental Cell, 2008,14(1):80-85. |
[16] | 李雪丽, 唐云, 许雪珠 . 核转录因子Nrf2最新研究进展[J]. 中国组织工程研究, 2012,16(24):4530-4534. |
[17] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCt)[J]. Methods, 2001,25(5):402-408.
DOI URL |
[18] | Rigsby C M, Showalter D N, Herms D A , et al. Physiological responses of emerald ash borer larvae to feeding on different ash species reveal putative resistance mechanisms and insect counter-adaptations[J]. Journal of insect physiology, 2015,78(11):56-64. |
[19] | 王亚茹, 梁晓, 伍春玲 , 等. 木瓜秀粉蚧取食不同木薯品种后体内保护酶活性差异分析[J]. 生物技术通报, 2018,34(6):115-119. |
[20] | 胡黎华 . 寄主转换对橘小实蝇种群动态和抗氧化酶系的影响[D]. 重庆: 西南大学, 2011. |
[21] |
Lu F, Liang X, Lu H , et al. Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus[J]. Scientific Reports, 2017,7:40179.
DOI |
[22] | Lu F, Chen Z, Lu H , et al. Effects of resistant and susceptible rubber germplasms on development, reproduction and protective enzyme activities of Eotetranychus sexmaculatus (Acari: Tetranychidae)[J]. Experimental and Applied Acarology, 2016,9(4):427-443. |
[23] | Andrew P, Dirk B . Mechanisms and functions of Nrf2 signaling in Drosophila[J]. Free Radical Biology & Medicine, 2015,88(Pt B):302-313. |
[24] | Misra J R, Horner M A, Lam G , et al. Transcriptional regulation of xenobiotic detoxification in Drosophila[J]. Genes & Development, 2011,25(17):1796-1806. |
[1] | ZHANG Zhe,CHEN Qing,LIANG Xiao,WU Chunling,CHEN Qian,Zhang Yindong. Analysis on Difference of Nutrient Content in Leaf Tissue of Resistant and Sensitive Cassava Varieties Before and After Damage to Tetranychus cinnabarinus [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1865-1869. |
[2] | WEI Yundong,LUO Yanchun,ZHENG Hua,LI Jun,PAN Huan,LEI Kaiwen,XU Chuan. Cassava Rhizosphere Soil Collected by “Root Bag” Method and Its Bacteria Diversity [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1928-1938. |
[3] | LI Hengrui,CHEN Huixian,YANG Haixia,ZHANG Xiufen,HE Wen,LIANG Zhenhua,GUO Suyun,LIU Lianjun,LI Ping,CHEN Haisheng,YAN Huabing. Flowering and Fruiting Characteristics of Cassava Diploid and Its Autotetraploid [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1582-1588. |
[4] | YUAN Fei,LIU Zifan,YAN Wenjing,LIU Peipei. Allelopathy of Root Exudates and Aqueous Extracts from Soil of Cassava to Rigidoprus lignosu and Corynespora cassiicola of Hevea brasiliensis [J]. Chinese Journal of Tropical Crops, 2020, 41(8): 1708-1713. |
[5] | LIU Zifan,LIU Peipei,YAN Wenjing,MA Xiaowei. Effects of Rubber-cassava Intercropping on Soil Fungal Community Structure in Rhizosphere of Rubber Trees [J]. Chinese Journal of Tropical Crops, 2020, 41(3): 609-614. |
[6] | CHEN Qian,LIANG Xiao,WU Chunling,CHEN Qing,LIU Ying,ZHANG Zhe. Effects of Different Cassava Cultivars on Antioxidant Enzyme Activities of Paracoccus marginatus [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2273-2279. |
[7] | Luiz JCB Carvalho,CHEN Songbi. Genetic Resources, Evaluation, Application and Breeding of Cassava Crop [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 1968-1978. |
[8] | LIU Shanting,LUO Xinglu,WU Meiyan,TANG Zhiping,WANG Chaochao,ZHANG Jialing. Comparison of Cassava Yield and Soil Microbial Characteristics under Continuous Cropping and Rotation [J]. Chinese Journal of Tropical Crops, 2019, 40(8): 1468-1473. |
[9] | LI Mao,ZI Xuejuan,DIAO Qiyu,HU Haichao,TANG Jun,ZHOU Hanlin. Organic Acids Improve the Fermentation Quality and Nutrient Value of Cassava Foliage [J]. Chinese Journal of Tropical Crops, 2019, 40(7): 1312-1316. |
[10] | LIN Zhaowei,LI Chaoping,SHI Tao,WANG Guofen,LI Boxun,CAI Jimiao,HUANG Guixiu. Cloning and Expression Analysis of Cassava MeNAC29 and MeNAC30 Genes [J]. Chinese Journal of Tropical Crops, 2019, 40(4): 701-707. |
[11] | CHEN Huixian,CAO Sheng,YAN Huabing,XIE Xiangyu,SHANG Xiaohong. The Effect of Increasing Bio-organic Fertilizer on the Yield and Quality of Edible-cassava [J]. Chinese Journal of Tropical Crops, 2019, 40(3): 417-424. |
[12] | WU Yuanhang,LIU Qin,LIU Pandao,GUO Pengfei,LI Min,JIANG Lingyan,LUO Lijuan. Cloning of Cassava Phenylalanine Ammonia Lyase Genes and Their Responses to Low Temperature Stress [J]. Chinese Journal of Tropical Crops, 2019, 40(3): 483-489. |
[13] | SHI Tao,LI Chaoping,CAI Jimiao,WANG Guofen,LU Cuimei,HAN Quanhui,HUANG Guixiu. Occurrence Pattern Investigation and Fungicides Control Effect in Field for Cassava Brown Leaf Spot Disease in China [J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2178-2188. |
[14] | SU Bimeng,WANG Juan,HUANG Jie,WEI Yunxia,DENG Ganran,HE Fengguang,YU Changde,CHEN Chen,LIU Zhi. Storage Root Configuration of Cassava and the Influence for Mechanical Harvesting [J]. Chinese Journal of Tropical Crops, 2019, 40(10): 2029-2033. |
[15] | ZHANG Wei,YI Tuo,TANG Wei,SONG Yong. Selection and Comprehensive Evaluation of Cassava Cold-resistant Germplasm Resources and Identification Indexes [J]. Chinese Journal of Tropical Crops, 2019, 40(1): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||