Chinese Journal of Tropical Crops ›› 2019, Vol. 40 ›› Issue (2): 300-307.DOI: 10.3969/j.issn.1000-2561.2019.02.013
• Biotechnology and Tissue Culture • Previous Articles Next Articles
YAN Lin1,HUANG Lifang1,WANG Xiaoyang1,ZHOU Hua2,CHENG Jinhuan3,LI Jinhong2,LONG Yuzhou1,DONG Yunping1,*()
Received:
2018-04-18
Revised:
2018-10-28
Online:
2019-02-25
Published:
2019-05-16
Contact:
DONG Yunping
CLC Number:
YAN Lin,HUANG Lifang,WANG Xiaoyang,ZHOU Hua,CHENG Jinhuan,LI Jinhong,LONG Yuzhou,DONG Yunping. Genetic Diversity of Coffee Germplasms by ISSR Markers[J]. Chinese Journal of Tropical Crops, 2019, 40(2): 300-307.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.rdzwxb.com/EN/10.3969/j.issn.1000-2561.2019.02.013
编号No. | 种质名称Germplasms name | 物种 Genus | 产地 Origin | 编号No. | 种质名称 Germplasms name | 物种 Genus | 产地 Origin |
---|---|---|---|---|---|---|---|
1 | 大粒种(印度) | C. liberica Bull | 印度 | 45 | T5175 | C. arabica Linné | 哥斯达黎加 |
2 | 杂交种 | C. arabica Linné | 中国云南德宏 | 46 | 厄瓜多尔 | C. arabica Linné | 厄瓜多尔 |
3 | 老品种 | C. arabica Linné | 中国云南弄贤寨 | 47 | 墨西哥 | C. arabica Linné | 墨西哥 |
4 | MEXICO 11 | C. arabica Linné | 墨西哥 | 48 | 津巴布韦 | C. arabica Linné | 津巴布韦 |
5 | COLOMBIA | C. arabica Linné | 哥伦比亚 | 49 | 坦桑尼亚 | C. arabica Linné | 坦桑尼亚 |
6 | DTARI028 | C. arabica Linné | 葡萄牙 | 50 | 肯尼亚-1 | C. arabica Linné | 肯尼亚 |
7 | 德热48-1 | C. arabica Linné | 中国云南德宏 | 51 | 肯尼亚-2 | C. arabica Linné | 肯尼亚 |
8 | 德热293 | C. arabica Linné | 中国云南德宏 | 52 | 肯尼亚-3 | C. arabica Linné | 肯尼亚 |
9 | 德热132 | C. arabica Linné | 中国云南德宏 | 53 | 肯尼亚-4 | C. arabica Linné | 肯尼亚 |
10 | 德热199-1 | C. arabica Linné | 中国云南德宏 | 54 | 澳大利亚-1 | C. arabica Linné | 澳大利亚 |
11 | 德热161 | C. arabica Linné | 中国云南德宏 | 55 | 澳大利亚-2 | C. arabica Linné | 澳大利亚 |
12 | 德热296 | C. arabica Linné | 中国云南德宏 | 56 | 哥斯达黎加-1 | C. arabica Linné | 哥斯达黎加 |
13 | BIUE MOUNTAIN (变异株) | C. arabica Linné | 肯尼亚 | 57 | 哥斯达黎加-2 | C. arabica Linné | 哥斯达黎加 |
14 | 缅甸卡蒂姆 | C. arabica Linné | 缅甸 | 58 | 哥斯达黎加-3 | C. arabica Linné | 哥斯达黎加 |
15 | CCCA21 | C. arabica Linné | 法国 | 59 | 哥斯达黎加-4 | C. arabica Linné | 哥斯达黎加 |
16 | 卡蒂姆 CIFC7963 | C. arabica Linné | 葡萄牙 | 60 | 巴西-2 | C. arabica Linné | 巴西 |
17 | 矮种卡蒂姆 | C. arabica Linné | 葡萄牙 | 61 | 巴西-3 | C. arabica Linné | 巴西 |
18 | CATIMOR P86 | C. arabica Linné | 肯尼亚 | 62 | 巴西-4 | C. arabica Linné | 巴西 |
19 | CATIMOR P88 | C. arabica Linné | 肯尼亚 | 63 | 小粒种 | C. arabica Linné | 中国云南普洱 |
20 | CATMOR P90 | C. arabica Linné | 肯尼亚 | 64 | CCCA25 | C. arabica Linné | 法国 |
21 | CATIMOR P127 | C. arabica Linné | 肯尼亚 | 65 | CCCA24 | C. arabica Linné | 法国 |
22 | CATMOR P128 | C. arabica Linné | 肯尼亚 | 66 | T8667 | C. arabica Linné | 哥斯达黎加 |
23 | CATMOR P129 | C. arabica Linné | 肯尼亚 | 67 | P7963 | C. arabica Linné | 中国云南德宏 |
24 | CATIMOR P134 | C. arabica Linné | 肯尼亚 | 68 | NY002 | C. arabica Linné | 不详 |
25 | CATIMOR P130 | C. arabica Linné | 肯尼亚 | 69 | CB52 | C. arabica Linné | 哥斯达黎加 |
26 | RUME SUDAN | C. arabica Linné | 肯尼亚 | 70 | P2 | C. arabica Linné | 葡萄牙 |
27 | HIBRIDO DE TIMOR(HDT) | C. arabica Linné | 肯尼亚 | 71 | 铁毕卡 | C. arabica Linné | 哥伦比亚 |
28 | SL28 | C. arabica Linné | 肯尼亚 | 72 | 波邦 | C. arabica Linné | 哥伦比亚 |
29 | SL34 | C. arabica Linné | 肯尼亚 | 73 | 卡帝莫 | C. arabica Linné | 葡萄牙 |
30 | 萨尔瓦多-1 | C. arabica Linné | 萨尔瓦多 | 74 | 巴西1 | C. arabica Linné | 巴西 |
31 | 危地马拉 | C. arabica Linné | 危地马拉 | 75 | 矮卡2 | C. arabica Linné | 中国云南保山 |
32 | RUIRU 11 | C. arabica Linné | 肯尼亚 | 76 | 蓝山1号 | C. arabica Linné | 牙买加 |
33 | MA 2Ⅱ | C. arabica Linné | 马来西亚 | 77 | 蓝山2号 | C. arabica Linné | 牙买加 |
34 | 夏威夷-1(小叶) | C. arabica Linné | 夏威夷 | 78 | S795 | C. arabica Linné | 印度尼西亚 |
35 | 夏威夷-1(大叶) | C. arabica Linné | 夏威夷 | 79 | 紫叶种-2 | C. arabica Linné | 中国云南保山 |
36 | 夏威夷-2 | C. arabica Linné | 夏威夷 | 80 | 紫叶种-1 | C. arabica Linné | 中国云南 西双版纳 |
37 | Pt | C. arabica Linné | 葡萄牙 | 81 | 卡杜拉-1 | C. arabica Linné | 中国云南保山 |
38 | CATIMOR P1 | C. arabica Linné | 葡萄牙 | 82 | 巴西矮卡 | C. arabica Linné | 巴西 |
39 | CATIMOR P3 | C. arabica Linné | 葡萄牙 | 83 | 墨西哥5号 | C. arabica Linné | 墨西哥 |
40 | CATIMOR P4 | C. arabica Linné | 葡萄牙 | 84 | 墨西哥13号 | C. arabica Linné | 墨西哥 |
41 | P5 | C. arabica Linné | 葡萄牙 | 85 | 中粒种 | C. canephora Pierre | 中国云南保山 |
42 | BIUE MOUNTAIN | C. arabica Linné | 肯尼亚 | 86 | 大粒种-1 | C. liberica Bull ex | 中国云南西双版纳勐伦 |
43 | PURPURASCEMS | C. arabica Linné | 肯尼亚 | 87 | 大粒种-2 | C. liberica Bull ex | 中国云南保山 |
44 | 哥伦比亚 | C. arabica Linné | 哥伦比亚 |
Tab. 1 Coffee germplasm resources used in this study
编号No. | 种质名称Germplasms name | 物种 Genus | 产地 Origin | 编号No. | 种质名称 Germplasms name | 物种 Genus | 产地 Origin |
---|---|---|---|---|---|---|---|
1 | 大粒种(印度) | C. liberica Bull | 印度 | 45 | T5175 | C. arabica Linné | 哥斯达黎加 |
2 | 杂交种 | C. arabica Linné | 中国云南德宏 | 46 | 厄瓜多尔 | C. arabica Linné | 厄瓜多尔 |
3 | 老品种 | C. arabica Linné | 中国云南弄贤寨 | 47 | 墨西哥 | C. arabica Linné | 墨西哥 |
4 | MEXICO 11 | C. arabica Linné | 墨西哥 | 48 | 津巴布韦 | C. arabica Linné | 津巴布韦 |
5 | COLOMBIA | C. arabica Linné | 哥伦比亚 | 49 | 坦桑尼亚 | C. arabica Linné | 坦桑尼亚 |
6 | DTARI028 | C. arabica Linné | 葡萄牙 | 50 | 肯尼亚-1 | C. arabica Linné | 肯尼亚 |
7 | 德热48-1 | C. arabica Linné | 中国云南德宏 | 51 | 肯尼亚-2 | C. arabica Linné | 肯尼亚 |
8 | 德热293 | C. arabica Linné | 中国云南德宏 | 52 | 肯尼亚-3 | C. arabica Linné | 肯尼亚 |
9 | 德热132 | C. arabica Linné | 中国云南德宏 | 53 | 肯尼亚-4 | C. arabica Linné | 肯尼亚 |
10 | 德热199-1 | C. arabica Linné | 中国云南德宏 | 54 | 澳大利亚-1 | C. arabica Linné | 澳大利亚 |
11 | 德热161 | C. arabica Linné | 中国云南德宏 | 55 | 澳大利亚-2 | C. arabica Linné | 澳大利亚 |
12 | 德热296 | C. arabica Linné | 中国云南德宏 | 56 | 哥斯达黎加-1 | C. arabica Linné | 哥斯达黎加 |
13 | BIUE MOUNTAIN (变异株) | C. arabica Linné | 肯尼亚 | 57 | 哥斯达黎加-2 | C. arabica Linné | 哥斯达黎加 |
14 | 缅甸卡蒂姆 | C. arabica Linné | 缅甸 | 58 | 哥斯达黎加-3 | C. arabica Linné | 哥斯达黎加 |
15 | CCCA21 | C. arabica Linné | 法国 | 59 | 哥斯达黎加-4 | C. arabica Linné | 哥斯达黎加 |
16 | 卡蒂姆 CIFC7963 | C. arabica Linné | 葡萄牙 | 60 | 巴西-2 | C. arabica Linné | 巴西 |
17 | 矮种卡蒂姆 | C. arabica Linné | 葡萄牙 | 61 | 巴西-3 | C. arabica Linné | 巴西 |
18 | CATIMOR P86 | C. arabica Linné | 肯尼亚 | 62 | 巴西-4 | C. arabica Linné | 巴西 |
19 | CATIMOR P88 | C. arabica Linné | 肯尼亚 | 63 | 小粒种 | C. arabica Linné | 中国云南普洱 |
20 | CATMOR P90 | C. arabica Linné | 肯尼亚 | 64 | CCCA25 | C. arabica Linné | 法国 |
21 | CATIMOR P127 | C. arabica Linné | 肯尼亚 | 65 | CCCA24 | C. arabica Linné | 法国 |
22 | CATMOR P128 | C. arabica Linné | 肯尼亚 | 66 | T8667 | C. arabica Linné | 哥斯达黎加 |
23 | CATMOR P129 | C. arabica Linné | 肯尼亚 | 67 | P7963 | C. arabica Linné | 中国云南德宏 |
24 | CATIMOR P134 | C. arabica Linné | 肯尼亚 | 68 | NY002 | C. arabica Linné | 不详 |
25 | CATIMOR P130 | C. arabica Linné | 肯尼亚 | 69 | CB52 | C. arabica Linné | 哥斯达黎加 |
26 | RUME SUDAN | C. arabica Linné | 肯尼亚 | 70 | P2 | C. arabica Linné | 葡萄牙 |
27 | HIBRIDO DE TIMOR(HDT) | C. arabica Linné | 肯尼亚 | 71 | 铁毕卡 | C. arabica Linné | 哥伦比亚 |
28 | SL28 | C. arabica Linné | 肯尼亚 | 72 | 波邦 | C. arabica Linné | 哥伦比亚 |
29 | SL34 | C. arabica Linné | 肯尼亚 | 73 | 卡帝莫 | C. arabica Linné | 葡萄牙 |
30 | 萨尔瓦多-1 | C. arabica Linné | 萨尔瓦多 | 74 | 巴西1 | C. arabica Linné | 巴西 |
31 | 危地马拉 | C. arabica Linné | 危地马拉 | 75 | 矮卡2 | C. arabica Linné | 中国云南保山 |
32 | RUIRU 11 | C. arabica Linné | 肯尼亚 | 76 | 蓝山1号 | C. arabica Linné | 牙买加 |
33 | MA 2Ⅱ | C. arabica Linné | 马来西亚 | 77 | 蓝山2号 | C. arabica Linné | 牙买加 |
34 | 夏威夷-1(小叶) | C. arabica Linné | 夏威夷 | 78 | S795 | C. arabica Linné | 印度尼西亚 |
35 | 夏威夷-1(大叶) | C. arabica Linné | 夏威夷 | 79 | 紫叶种-2 | C. arabica Linné | 中国云南保山 |
36 | 夏威夷-2 | C. arabica Linné | 夏威夷 | 80 | 紫叶种-1 | C. arabica Linné | 中国云南 西双版纳 |
37 | Pt | C. arabica Linné | 葡萄牙 | 81 | 卡杜拉-1 | C. arabica Linné | 中国云南保山 |
38 | CATIMOR P1 | C. arabica Linné | 葡萄牙 | 82 | 巴西矮卡 | C. arabica Linné | 巴西 |
39 | CATIMOR P3 | C. arabica Linné | 葡萄牙 | 83 | 墨西哥5号 | C. arabica Linné | 墨西哥 |
40 | CATIMOR P4 | C. arabica Linné | 葡萄牙 | 84 | 墨西哥13号 | C. arabica Linné | 墨西哥 |
41 | P5 | C. arabica Linné | 葡萄牙 | 85 | 中粒种 | C. canephora Pierre | 中国云南保山 |
42 | BIUE MOUNTAIN | C. arabica Linné | 肯尼亚 | 86 | 大粒种-1 | C. liberica Bull ex | 中国云南西双版纳勐伦 |
43 | PURPURASCEMS | C. arabica Linné | 肯尼亚 | 87 | 大粒种-2 | C. liberica Bull ex | 中国云南保山 |
44 | 哥伦比亚 | C. arabica Linné | 哥伦比亚 |
引物编号 Primer code | 引物序列 Primer sequence | 总带数 Number of amplified bands | 多态性带数 Number of polymorphic bands | 多态性比率 Percentage of polymorphic bands/% |
---|---|---|---|---|
UBC807 | AGAGAGAGAGAGAGAGT | 10 | 7 | 70.0 |
UBC811 | GAGAGAGAGAGAGAGAC | 7 | 6 | 85.7 |
UBC812 | GAGAGAGAGAGAGAGAA | 8 | 8 | 100.0 |
UBC827 | ACACACACACACACACG | 8 | 6 | 75.0 |
UBC835 | AGAGAGAGAGAGAGAGYC | 5 | 3 | 60.0 |
UBC840 | GAGAGAGAGAGAGAGAYT | 4 | 2 | 50.0 |
UBC864 | ATGATGATGATGATGATG | 7 | 5 | 71.4 |
UBC867 | GGCGGCGGCGGCGGCGGC | 5 | 3 | 60.0 |
UBC868 | GAAGAAGAAGAAGAAGAA | 3 | 1 | 33.4 |
UBC879 | CTTCACTTCACTTCA | 3 | 3 | 100.0 |
UBC817 | CACACACACACACACAA | 10 | 9 | 90.0 |
UBC818 | CACACACACACACACAG | 9 | 8 | 88.8 |
UBC834 | AGAGAGAGAGAGAGAGYT | 10 | 5 | 50.0 |
UBC841 | GAGAGAGAGAGAGAGAYC | 7 | 2 | 28.5 |
UBC842 | GAGAGAGAGAGAGAGAYG | 7 | 6 | 85.7 |
UBC843 | CTCTCTCTCTCTCTCTRA | 8 | 8 | 100.0 |
UBC854 | TCTCTCTCTCTCTCTCRG | 8 | 6 | 75.0 |
UBC845 | CTCTCTCTCTCTCTCTRG | 8 | 7 | 87.5 |
UBC900 | ACTTCCCCACAGGTTAACACA | 13 | 11 | 84.6 |
总计 | 140 | 107 | 76.4 |
Tab. 2 The sequence of ISSR primers
引物编号 Primer code | 引物序列 Primer sequence | 总带数 Number of amplified bands | 多态性带数 Number of polymorphic bands | 多态性比率 Percentage of polymorphic bands/% |
---|---|---|---|---|
UBC807 | AGAGAGAGAGAGAGAGT | 10 | 7 | 70.0 |
UBC811 | GAGAGAGAGAGAGAGAC | 7 | 6 | 85.7 |
UBC812 | GAGAGAGAGAGAGAGAA | 8 | 8 | 100.0 |
UBC827 | ACACACACACACACACG | 8 | 6 | 75.0 |
UBC835 | AGAGAGAGAGAGAGAGYC | 5 | 3 | 60.0 |
UBC840 | GAGAGAGAGAGAGAGAYT | 4 | 2 | 50.0 |
UBC864 | ATGATGATGATGATGATG | 7 | 5 | 71.4 |
UBC867 | GGCGGCGGCGGCGGCGGC | 5 | 3 | 60.0 |
UBC868 | GAAGAAGAAGAAGAAGAA | 3 | 1 | 33.4 |
UBC879 | CTTCACTTCACTTCA | 3 | 3 | 100.0 |
UBC817 | CACACACACACACACAA | 10 | 9 | 90.0 |
UBC818 | CACACACACACACACAG | 9 | 8 | 88.8 |
UBC834 | AGAGAGAGAGAGAGAGYT | 10 | 5 | 50.0 |
UBC841 | GAGAGAGAGAGAGAGAYC | 7 | 2 | 28.5 |
UBC842 | GAGAGAGAGAGAGAGAYG | 7 | 6 | 85.7 |
UBC843 | CTCTCTCTCTCTCTCTRA | 8 | 8 | 100.0 |
UBC854 | TCTCTCTCTCTCTCTCRG | 8 | 6 | 75.0 |
UBC845 | CTCTCTCTCTCTCTCTRG | 8 | 7 | 87.5 |
UBC900 | ACTTCCCCACAGGTTAACACA | 13 | 11 | 84.6 |
总计 | 140 | 107 | 76.4 |
种质编号No. | 最小遗传 系数系数 Min coefficients | 最大遗传相似系数 Max coefficients | 平均遗传相似系数 Average coefficients | 种质编号No. | 最小遗传 系数系数 Min coefficients | 最大遗传相似系数 Max coefficient | 平均遗传相似系数 Average coefficients | 种质编号No. | 最小遗传 系数系数 Min coefficients | 最大遗传 相似系数 Max coefficient | 平均遗传相似系数 Average coefficients |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.449 | 0.645 | 0.547 | 30 | 0.449 | 0.935 | 0.692 | 59 | 0.477 | 0.944 | 0.711 |
2 | 0.598 | 0.757 | 0.678 | 31 | 0.430 | 0.888 | 0.659 | 60 | 0.570 | 0.860 | 0.715 |
3 | 0.514 | 0.888 | 0.701 | 32 | 0.449 | 0.907 | 0.678 | 61 | 0.589 | 0.860 | 0.725 |
4 | 0.477 | 0.935 | 0.706 | 33 | 0.505 | 0.860 | 0.683 | 62 | 0.439 | 0.944 | 0.692 |
5 | 0.449 | 0.972 | 0.711 | 34 | 0.449 | 0.981 | 0.715 | 63 | 0.495 | 0.935 | 0.715 |
6 | 0.486 | 0.935 | 0.711 | 35 | 0.449 | 0.991 | 0.720 | 64 | 0.505 | 0.953 | 0.729 |
7 | 0.495 | 0.860 | 0.678 | 36 | 0.439 | 0.991 | 0.715 | 65 | 0.467 | 0.944 | 0.706 |
8 | 0.449 | 0.916 | 0.683 | 37 | 0.495 | 0.935 | 0.715 | 66 | 0.477 | 0.953 | 0.715 |
9 | 0.570 | 0.832 | 0.701 | 38 | 0.495 | 0.925 | 0.710 | 67 | 0.458 | 0.897 | 0.678 |
10 | 0.486 | 0.860 | 0.673 | 39 | 0.458 | 0.981 | 0.720 | 68 | 0.523 | 0.869 | 0.696 |
11 | 0.486 | 0.888 | 0.687 | 40 | 0.439 | 0.963 | 0.701 | 69 | 0.505 | 0.869 | 0.687 |
12 | 0.505 | 0.907 | 0.706 | 41 | 0.449 | 0.953 | 0.701 | 70 | 0.430 | 0.897 | 0.664 |
13 | 0.486 | 0.935 | 0.711 | 42 | 0.458 | 0.944 | 0.701 | 71 | 0.514 | 0.822 | 0.668 |
14 | 0.448 | 0.925 | 0.687 | 43 | 0.486 | 0.944 | 0.715 | 72 | 0.477 | 0.897 | 0.687 |
15 | 0.579 | 0.888 | 0.734 | 44 | 0.467 | 0.981 | 0.724 | 73 | 0.542 | 0.860 | 0.701 |
16 | 0.477 | 0.944 | 0.711 | 45 | 0.486 | 0.963 | 0.725 | 74 | 0.505 | 0.944 | 0.725 |
17 | 0.458 | 0.944 | 0.701 | 46 | 0.467 | 0.916 | 0.692 | 75 | 0.560 | 0.766 | 0.663 |
18 | 0.477 | 0.963 | 0.720 | 47 | 0.514 | 0.813 | 0.664 | 76 | 0.542 | 0.850 | 0.696 |
19 | 0.514 | 0.860 | 0.687 | 48 | 0.449 | 0.860 | 0.655 | 77 | 0.505 | 0.925 | 0.715 |
20 | 0.449 | 0.935 | 0.692 | 49 | 0.430 | 0.963 | 0.697 | 78 | 0.505 | 0.879 | 0.692 |
21 | 0.477 | 0.944 | 0.711 | 50 | 0.467 | 0.963 | 0.715 | 79 | 0.533 | 0.916 | 0.725 |
22 | 0.505 | 0.935 | 0.720 | 51 | 0.449 | 0.963 | 0.706 | 80 | 0.495 | 0.925 | 0.710 |
23 | 0.477 | 0.963 | 0.720 | 52 | 0.467 | 0.935 | 0.701 | 81 | 0.486 | 0.925 | 0.706 |
24 | 0.486 | 0.888 | 0.687 | 53 | 0.458 | 0.963 | 0.711 | 82 | 0.533 | 0.925 | 0.729 |
25 | 0.439 | 0.925 | 0.682 | 54 | 0.467 | 0.972 | 0.720 | 83 | 0.495 | 0.944 | 0.720 |
26 | 0.449 | 0.944 | 0.697 | 55 | 0.514 | 0.935 | 0.725 | 84 | 0.458 | 0.841 | 0.650 |
27 | 0.467 | 0.935 | 0.701 | 56 | 0.467 | 0.935 | 0.701 | 85 | 0.682 | 0.449 | 0.566 |
28 | 0.467 | 0.963 | 0.715 | 57 | 0.467 | 0.897 | 0.682 | 86 | 0.430 | 0.785 | 0.608 |
29 | 0.505 | 0.879 | 0.692 | 58 | 0.486 | 0.944 | 0.715 | 87 | 0.439 | 0.785 | 0.612 |
Tab. 3 The genetic similarity cofficient among individuals
种质编号No. | 最小遗传 系数系数 Min coefficients | 最大遗传相似系数 Max coefficients | 平均遗传相似系数 Average coefficients | 种质编号No. | 最小遗传 系数系数 Min coefficients | 最大遗传相似系数 Max coefficient | 平均遗传相似系数 Average coefficients | 种质编号No. | 最小遗传 系数系数 Min coefficients | 最大遗传 相似系数 Max coefficient | 平均遗传相似系数 Average coefficients |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.449 | 0.645 | 0.547 | 30 | 0.449 | 0.935 | 0.692 | 59 | 0.477 | 0.944 | 0.711 |
2 | 0.598 | 0.757 | 0.678 | 31 | 0.430 | 0.888 | 0.659 | 60 | 0.570 | 0.860 | 0.715 |
3 | 0.514 | 0.888 | 0.701 | 32 | 0.449 | 0.907 | 0.678 | 61 | 0.589 | 0.860 | 0.725 |
4 | 0.477 | 0.935 | 0.706 | 33 | 0.505 | 0.860 | 0.683 | 62 | 0.439 | 0.944 | 0.692 |
5 | 0.449 | 0.972 | 0.711 | 34 | 0.449 | 0.981 | 0.715 | 63 | 0.495 | 0.935 | 0.715 |
6 | 0.486 | 0.935 | 0.711 | 35 | 0.449 | 0.991 | 0.720 | 64 | 0.505 | 0.953 | 0.729 |
7 | 0.495 | 0.860 | 0.678 | 36 | 0.439 | 0.991 | 0.715 | 65 | 0.467 | 0.944 | 0.706 |
8 | 0.449 | 0.916 | 0.683 | 37 | 0.495 | 0.935 | 0.715 | 66 | 0.477 | 0.953 | 0.715 |
9 | 0.570 | 0.832 | 0.701 | 38 | 0.495 | 0.925 | 0.710 | 67 | 0.458 | 0.897 | 0.678 |
10 | 0.486 | 0.860 | 0.673 | 39 | 0.458 | 0.981 | 0.720 | 68 | 0.523 | 0.869 | 0.696 |
11 | 0.486 | 0.888 | 0.687 | 40 | 0.439 | 0.963 | 0.701 | 69 | 0.505 | 0.869 | 0.687 |
12 | 0.505 | 0.907 | 0.706 | 41 | 0.449 | 0.953 | 0.701 | 70 | 0.430 | 0.897 | 0.664 |
13 | 0.486 | 0.935 | 0.711 | 42 | 0.458 | 0.944 | 0.701 | 71 | 0.514 | 0.822 | 0.668 |
14 | 0.448 | 0.925 | 0.687 | 43 | 0.486 | 0.944 | 0.715 | 72 | 0.477 | 0.897 | 0.687 |
15 | 0.579 | 0.888 | 0.734 | 44 | 0.467 | 0.981 | 0.724 | 73 | 0.542 | 0.860 | 0.701 |
16 | 0.477 | 0.944 | 0.711 | 45 | 0.486 | 0.963 | 0.725 | 74 | 0.505 | 0.944 | 0.725 |
17 | 0.458 | 0.944 | 0.701 | 46 | 0.467 | 0.916 | 0.692 | 75 | 0.560 | 0.766 | 0.663 |
18 | 0.477 | 0.963 | 0.720 | 47 | 0.514 | 0.813 | 0.664 | 76 | 0.542 | 0.850 | 0.696 |
19 | 0.514 | 0.860 | 0.687 | 48 | 0.449 | 0.860 | 0.655 | 77 | 0.505 | 0.925 | 0.715 |
20 | 0.449 | 0.935 | 0.692 | 49 | 0.430 | 0.963 | 0.697 | 78 | 0.505 | 0.879 | 0.692 |
21 | 0.477 | 0.944 | 0.711 | 50 | 0.467 | 0.963 | 0.715 | 79 | 0.533 | 0.916 | 0.725 |
22 | 0.505 | 0.935 | 0.720 | 51 | 0.449 | 0.963 | 0.706 | 80 | 0.495 | 0.925 | 0.710 |
23 | 0.477 | 0.963 | 0.720 | 52 | 0.467 | 0.935 | 0.701 | 81 | 0.486 | 0.925 | 0.706 |
24 | 0.486 | 0.888 | 0.687 | 53 | 0.458 | 0.963 | 0.711 | 82 | 0.533 | 0.925 | 0.729 |
25 | 0.439 | 0.925 | 0.682 | 54 | 0.467 | 0.972 | 0.720 | 83 | 0.495 | 0.944 | 0.720 |
26 | 0.449 | 0.944 | 0.697 | 55 | 0.514 | 0.935 | 0.725 | 84 | 0.458 | 0.841 | 0.650 |
27 | 0.467 | 0.935 | 0.701 | 56 | 0.467 | 0.935 | 0.701 | 85 | 0.682 | 0.449 | 0.566 |
28 | 0.467 | 0.963 | 0.715 | 57 | 0.467 | 0.897 | 0.682 | 86 | 0.430 | 0.785 | 0.608 |
29 | 0.505 | 0.879 | 0.692 | 58 | 0.486 | 0.944 | 0.715 | 87 | 0.439 | 0.785 | 0.612 |
[1] |
Davis AP, Tosh J, Ruch N , et al. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea[J]. Botanical Journal of the Linnean Society, 2011,167:357-377.
DOI URL |
[2] | Ceja-Navarro J A, Vega F E, Karaoz U , et al . Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee[J]. Nature Communication, 2015,6(7618):1-9. |
[3] |
Stoffelen P, Noirot M, Couturon E , et al. Coffea anthonyi; a new self-compatible Central African coffee species, closely related to an ancestor of Coffea arabica[J]. Taxon, 2009,58(1):133-140.
DOI URL |
[4] | Nowak M D, Davis A P, Anthony F , et al. Expression and trans-specific polymorphism of self-incompatibility rnases in Coffea (Rubiaceae)[J]. PLoS One, 2011,6(6):1-11. |
[5] | Anthony F, Combes C, Astorga C , et al. The origin of cultivated Coffea arabica L. varieties revealed by AFLP and SSR markers[J]. Theoretical & Applied Genetics. 2002,104(5):894-900. |
[6] |
Silvestrini M, Junqueira M G, Favarin A C , et al. Genetic diversity and structure of Ethiopian, Yemen and Brazilian Coffea arabica L. accessions using microsatellites markers[J]. Genetic Resources and Crop Evolution, 2007,54(1):1367-1379.
DOI URL |
[7] |
Cenci A , CombesM C, Lashermes P. Genome evolution in diploid and tetraploid coffea species as revealed by comparative analysis of orthologous genome segments[J]. Plant Molecular Biology, 2012,78(1):135-145.
DOI URL |
[8] |
Culley T M, Wolfe A D . Population genetic structuer of the cletstogamous plant species Viola pubescens Aiton (Vilaceae), as indicated by allozyme and ISSR molecular markers[J]. Heredity, 2001,86(5):545-556.
DOI URL |
[9] | 朱岩芳, 祝水金, 李永平 , 等. ISSR分子标记技术在植物种质资源研究中的应用[J]. 种子, 2010,29(2):55-59. |
[10] | 易克, 徐向利, 卢向阳 , 等. 利用SSR和ISSR标记技术构建西瓜分子遗传图谱[J]. 湖南农业大学学报(自然科学版), 2003,29(4):333-337. |
[11] | 李冬梅 . 饲草型小黑麦的遗传图谱构建及草产量和抗锈病相关基因的QTL定位[D]. 兰州: 甘肃农业大学, 2016. |
[12] |
Ruas P M, Ruas C F, Rampim L , et al. Genetic relationship in coffea species and parentage determination of interspecific hybrids using ISSR (Inter-Simple Sequence Repeat) markers[J]. Genetics and Molecular Biology, 2003,26(3):319-327.
DOI URL |
[13] |
Aga E, Bekele E, Bryngelsson T . Inter-simple sequence repeat (ISSR) variation in forest coffee trees (Coffea arabica L.) populations from Ethiopia[J]. Genetica, 2005,124(2-3):213-221.
DOI URL |
[14] |
Masumbuko L I, Bryngelsson T . Inter simple sequence repeat (ISSR) analysis of diploid coffee species and cultivated Coffea arabica L. from Tanzania[J]. Genetic Resources and Crop Evolution, 2006,53(2):357-366.
DOI URL |
[15] | Kumar S A, Sudisha J, Sreenath H L . Genetic relation of Coffea and Indian Psilanthus species as revealed through RAPD and ISSR markers[J]. International Journal of Integrative Biology, 2008,3(3):150-158. |
[16] | Tshilenge P, Nkongolo K K, Mehes M , et al. Genetic variation in Coffea canephora L.(Var. Robusta) accessions from the founder gene pool evaluated with ISSR and RAPD[J]. African Journal of Biotechnology, 2009,8(3):380-390. |
[17] |
Kassahun T, Kim G, Endashaw B , et al. ISSR fingerprinting of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces[J]. Plant Systematics and Evolution, 2014,300(5):881-897.
DOI URL |
[18] | 周华, 张洪波, 夏红云 , 等. 咖啡种质资源多样性研究[J]. 中国热带农业, 2015,5:48-52. |
[19] | 黄丽芳, 董云萍, 王晓阳 , 等. 利用RAPD标记分析咖啡种质资源的遗传多样性[J]. 热带作物学报, 2014,35(12):2313-2319. |
[20] | 黄丽芳, 董云萍, 王晓阳 , 等. 云南咖啡资源遗传多样性的RAPD分析[J]. 中国热带农业, 2017,5:48-52. |
[21] | 黄丽芳, 董云萍, 王晓阳 , 等 . 咖啡种质资源DNA指纹图谱的构建[J]. 热带农业科学, 2016, ( 36), 12:48-52. |
[22] | 黄丽芳, 闫林, 董云萍 , 等 . 咖啡叶片DNA提取方法的比较研究[J]. 热带农业科学, 2011, ( 31), 12:42-45. |
[23] | 闫林, 黄丽芳, 谭乐和 , 等. 咖啡ISSR与RAPD-PCR反应体系优化[J]. 热带作物学报, 2012,33(5):854-859. |
[24] | 王野, 陈磊, 白云 , 等. 云杉矮槲寄生遗传多样性的ISSR分析[J]. 西北植物学报, 2017,37(11):2153-2162. |
[25] | 时圣明, 潘明佳, 王洁 , 等. 分子鉴定技术在中药中的应用[J]. 中草药, 2016,47(17):3121-3126. |
[26] | 马克平 . 试论生物多样性的概念[J]. 生物多样性, 1993,1(1):20-22. |
[27] | 郑勇民, 张旭业, 徐秉良 , 等. 美洲南瓜种质资源遗传多样性的ISSR分析[J]. 甘肃农业大学学报, 2017,6:76-82. |
[28] | Masumbuko L I, Bryngelsson T, Mneney E E . Genetic diversity in Tanzanian Arabica coffee using random amplified polymorphic DNA (RAPD) markers[J]. Hereditas, 2010,139(1):56-63. |
[29] |
Rotondi A, Magli M, Ricciolini C , et al. Morphological andmolecular analyses for the characterization of a group of Italyolive cuhivars[J]. Euphytica, 2003,132(2):129-137.
DOI URL |
[30] | 陈海云, 宁德鲁, 李勇杰 , 等. 59 个油橄榄种质的ISSR分子鉴定[J]. 东北林业大学学报, 2013,41(3):13-17. |
[31] | 席春奕, 唐茜, 吴永胜 , 等. 30份四川茶树种质资源遗传多样性与亲缘关系的SRAP分析[J]. 贵州农业科学, 2013,41(2):6-9. |
[1] | JING Lingxia,BU Chaoyang,LI Chunniu,DI Qinglin. Genetic Diversity of Phenotypic Traits in 25 Jasminum Germplasm Resources [J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1762-1769. |
[2] | ZHANG Tao,HE Peng,SONG Haiyun,XU Peng,MO Qingdao,QIN Zhenshi,WEI Yuanrong,TANG Xiuhua,WANG Wenlin,ZHENG Shufang. Evaluation of 30 Species of Clausena anisum-olens (Blanco) Merr. Germplasm Resources Based on Factor Analysis and Cluster Analysis [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1326-1334. |
[3] | SUN Yan,LIN Xingjun,LONG Yuzhou,DONG Yunping,ZHAO Qingyun,TAN Jun. Growth and Photosynthetic Characteristics of Coffee Double Roots Grafting Seedling [J]. Chinese Journal of Tropical Crops, 2020, 41(7): 1387-1392. |
[4] | WANG Chunfang,YU Xinghua,WANG Xianhong,YANG Qinghui. Genetic Diversity Analysis Based on Main Phenotypic Characteristics of Erianthus arundinaceum Germplasm from Different Regions [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1108-1116. |
[5] | HU Rongsuo,GAN Xiaohong,DONG Wenjiang,LONG Yuzhou,ZONG Ying,CHU Zhong. Influence of Different Exogenous Fermentable Sugars and Amino Acids on Flavor and Sensory Quality of Coffee Pulp Wine [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1208-1218. |
[6] | LUO Bailing,LIU Dunhua,DONG Wenjiang,HU Rongsuo,LONG Yuzhou,CHEN Zhihua,JIANG Kuaile. Effect of Ultrafine Grinding on Physicochemical Properties, Structure and Adsorption Capacity of Coffee Peel [J]. Chinese Journal of Tropical Crops, 2020, 41(6): 1219-1226. |
[7] | WU Shengjin,CHEN Xuefeng,WANG Canqin,SU Qichen,WEI Shiyan,WU Xiaojian,LANG Ning,LAN Taoju. Genetic Variation of Auricularia heimuer Strains in Guangxi [J]. Chinese Journal of Tropical Crops, 2020, 41(5): 921-928. |
[8] | YUAN Yuan,CAO Bin,ZHANG Yongqi,CHEN Qingxi,CHEN Nanchuan. Genetic Diversity Analysis of Cymbidium Germplasms Based on SRAP Markers [J]. Chinese Journal of Tropical Crops, 2020, 41(5): 929-938. |
[9] | ZHAO Qingyun,PU Haojie,WANG Qiujing,DONG Yunping,LIN Xingjun,SUN Yan,LONG Yuzhou. Nutrient Content of Coffee Peel with Different Composting Treatments and Its Effects on Coffee Plant Growth [J]. Chinese Journal of Tropical Crops, 2020, 41(4): 633-639. |
[10] | XU Duanxiang,DU Wenli,CHEN Zhongshan,ZHAO Ruili,XU Tongwei,GAO Shan. EST-SSR Marker Development and Utilization Based on Transcriptome of Lagenariasiceraria (Mol.) Stand. [J]. Chinese Journal of Tropical Crops, 2020, 41(3): 529-537. |
[11] | SU Qun,YANG Yahan,TIAN Min,BU Zhaoyang,MAO Liyan,ZHANG Jinzhong,PAN Jiechun,LU Jiashi. Genetic Diversity Analysis and DNA Fingerprinting Construction of Waterlily Germplasm Resources [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 258-266. |
[12] | CHEN Yunlan,LI Xueling,JIANG Kuaile,MO Lizhen,ZHOU Zhiwei,CHEN Zhihua,GUI Hua. Effects of Pectinase on Pectin Removing Time and Cup Quality in Wet Fermentation of Coffee [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 371-377. |
[13] | SHEN Yao,WANG Hanxuan,HOU Haixian,WU Zhiming,ZHOU Hougao. Genetic Diversity Analysis of the Potted Chrysanthemum Based on Phenotype and SRAP Marker [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2156-2164. |
[14] | ZHOU Lixia,ZHAO Zhihao,CAO Hongxing. Genetic Diversity Analysis on the Major Agronomic Traits of 90 Oil Palm Germplasms [J]. Chinese Journal of Tropical Crops, 2020, 41(11): 2197-2204. |
[15] | Luiz JCB Carvalho,CHEN Songbi. Genetic Resources, Evaluation, Application and Breeding of Cassava Crop [J]. Chinese Journal of Tropical Crops, 2020, 41(10): 1968-1978. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||