[1] |
Allen C, Prior P, Hayward A C. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex[M]. American Phytopathological Society Press, St. Paul, MN, U.S.A., 2005.
|
[2] |
Jiang G F, Wei Z, Xu J, et al. Bacterial wilt in China: History, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8:1549.
DOI
URL
|
[3] |
Kitanosono S, Suzuki K, et al. A new method for the selection of tomato plants resistant to bacterial wilt using bioluminescence from lux-marked Ralstonia solanacearum[J]. Japanese Journal of Phytopathology, 1999, 65(4):470-474.
DOI
URL
|
[4] |
Hikichi Y, Nakazawa-Nasu Y, Kitanosono S, et al. The behavior of lux-marked Ralstonia solanacearum in grafted tomato cultivars resistant or susceptible to bacterial wilt[J]. Japanese Journal of Phytopathology, 1999, 65(6):597-603.
DOI
URL
|
[5] |
CruZ Z A P, Ferreira V, Pianzzola M J, et al. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain[J]. Molecular Plant-microbe Interactions, 2014, 27(3):277-285.
DOI
URL
|
[6] |
Wang H J, Hu J X, Lu Y, et al. A quick and efficient hydroponic potato infection method for evaluating potato resistance and Ralstonia solanacearum virulence[J]. Plant Methods, 2019, 15:145.
DOI
URL
|
[7] |
Planas-Marquès M, Kressin J P, Kashyap A, et al. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato[J]. Journal of Experimental Botany, 2019, 71(6):2157-2171.
DOI
URL
|
[8] |
Kawasaki T, Satsuma H, Fujie M, et al. Monitoring of phytopathogenic Ralstonia solanacearum cells using green fluorescent protein-expressing plasmid derived from bacteriophage RSS1[J]. Journal of Bioscience & Bioengineering, 2007, 104(6):451-456.
|
[9] |
车建美, 蓝江林, 刘波. 转绿色荧光蛋白基因的青枯雷尔氏菌生物学特性[J]. 中国农业科学, 2008(11):3626-3635.
|
[10] |
Monteiro F, Solé M, van DI, et al. A chromosomal insertion toolbox for promoter probing, mutant complementation, and pathogenicity studies in Ralstonia solanacearum[J]. Molecular Plant-microbe Interactions, 2012, 25(4):557-568.
DOI
URL
|
[11] |
赵志文, 李艳娇, 户勋, 等. 用于植物病原细菌标记的pBB-GFP载体构建及应用[J]. 生物技术通报, 2018, 34(3):136-141.
|
[12] |
Monteiro F, Genin S, van Dijk I, et al. A luminescent reporter evidences active expression of Ralstonia solanacearum type III secretion system genes throughout plant infection[J]. Microbiology, 2012, 158(Pt_8):2107-2116.
DOI
URL
|
[13] |
张治飞. 青枯菌的基因标记及马铃薯青枯病抗性相关信号途径探究[D]. 武汉: 华中农业大学, 2016.
|
[14] |
Boucher C A, Barberis P A, Trigalet E P, et al. Transposon mutagenesis of Pseudomonas solanacearum: Isolation of Tn5-induced avirulent mutants[J]. Journal of General Microbiology, 1989, 131(9):2449-2457.
|
[15] |
郜刚. 青枯菌诱导的马铃薯防卫相关基因克隆与表达[D]. 北京: 中国农业科学院, 2008.
|
[16] |
王丽. 中国马铃著青巧茵致病力和遗传多样性研究[D]. 武汉: 华中农业大学, 2016.
|
[17] |
贾娜娜, 翟立峰, 白晴, 等. 腐烂病菌的GFP标记及其在梨叶片组织中的侵染和扩展观察[J]. 果树学报, 2015, 32(6):1195-1200,1316-1317.
|
[18] |
刘晓妹, 杨永利, 张贺, 等. GFP标记杧果露水斑病病原菌及其侵染部位的确定[J]. 热带作物学报, 2018, 39(11):2235-2240.
|
[19] |
胡展, 雷平, 郭照辉, 等. 生防放线菌Ahn75的荧光标记及其在水稻中的定殖[J]. 微生物学通报, 2019, 46(10):2612-2619.
|
[20] |
Wang K R, Kang L, Anand A, et al. Monitoring in planta bacterial infection at both cellular and whole‐plant levels using the green fluorescent protein variant GFPuv[J]. New Phytologist, 2007, 174(1):212-223.
DOI
URL
|
[21] |
Didier A, Belen B, Christian B, et al. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes[J]. The EMBO Journal, 2000, 19(10):2304-2314.
DOI
URL
|
[22] |
宁文艳, 吴先敏, 王春梅, 等. 启动子Ptac与PsbA在鱼腥藻7120中表达hG-CSF的效率比较[J]. 微生物学杂志, 2014, 34(3):36-41.
|
[23] |
Fujie M, Takamoto H, Kawasaki T, et al. Monitoring growth and movement of Ralstonia solanacearum cells harboring plasmid pRSS12 derived from bacteriophage phiRSS1[J]. Journal of Bioscience and Bioengineering, 2010, 109(2):153-158.
DOI
URL
|
[24] |
王帅, 徐进, 许景升, 等. PMA-qPCR定量检测青枯菌活菌方法的建立[J]. 植物保护, 2018, 44(6):122-128, 135.
|